Molecular Fuzzy Graphs, Hypergraphs, and Superhypergraphs

Authors

  • Takaaki Fujita * Independent Researcher, Shinjuku, Shinjuku-ku,Tokyo, Japan.

https://doi.org/10.48314/jidcm.v1i3.64

Abstract

Graph theory provides a framework for clearly representing relationships between objects [1, 2]. In the
fields of chemistry and biology, graph-based concepts are widely applied. Hypergraphs generalize classical
graphs by allowing hyperedges to connect any nonempty subset of vertices [3]. Superhypergraphs extend
this concept by iterating the powerset operation, thereby generating nested layers that capture hierarchical
and self-referential structures among collections of vertices [4]. A molecular graph models a molecule with
atoms as vertices and bonds as edges, representing its structural connectivity. Fuzzy graphs and fuzzy
hypergraphs enrich these structures by assigning membership degrees to vertices and (hyper)edges. In
this paper, we introduce definitions of molecular fuzzy graphs, hypergraphs, and superhypergraphs, and
examine their properties and potential applications.

References

  1. [1] Diestel, R. (2025). Graph theory (Vol. 173). Springer Nature. https://doi.org/10.1007/978-3-662-70107-2

  2. [2] Gross, J. L., Yellen, J., & Anderson, M. (2018). Graph theory and its applications. Chapman and Hall/CRC.

  3. [3] https://doi.org/10.1201/9780429425134

  4. [4] Berge, C. (1984). Hypergraphs: combinatorics of finite sets (Vol. 45). Elsevier.Hypergraphs, Volume 45 - 1st Edition | Elsevier Shop

  5. [5] Hamidi, M., Smarandache, F., & Davneshvar, E. (2022). Spectrum of superhypergraphs via flows. Journal of mathematics, 2022(1),

  6. [6] https://doi.org/10.1155/2022/9158912

  7. [7] Akram, M., Gani, A. N., & Saeid, A. B. (2014). Vague hypergraphs. Journal of intelligent & fuzzy systems, 26(2), 647-653.

  8. [8] https://doi.org/10.3233/IFS-120756

  9. [9] Feng, Y., You, H., Zhang, Z., Ji, R., & Gao, Y. (2019). Hypergraph neural networks. In Proceedings of the AAAI conference on artificial in

  10. [10] telligence (Vol. 33, No. 01, pp. 3558-3565). https://doi.org/10.1609/aaai.v33i01.33013558

  11. [11] Gottlob, G., Leone, N., & Scarcello, F. (1999, May). Hypertree decompositions and tractable queries. In Proceedings of the eighteenth

  12. [12] ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems (pp. 21-32). https://doi.org /10.1145/303976.303979

  13. [13] Valencia, E. M. C., Vásquez, J. P. C., & Lois, F. A. B. (2025). Multineutrosophic analysis of the relationship between survival and busi

  14. [14] ness growth in the manufacturing sector of azuay province, 2020–2023, using plithogenic n-superhypergraphs. Neutrosophic sets and

  15. [15] systems, 84, 341-355. https://doi.org/10.5281/zenodo.15640723

  16. [16] Ghods, M., Rostami, Z., & Smarandache, F. (2022). Introduction to neutrosophic restricted superhypergraphs and neutrosophic re

  17. [17] stricted superhypertrees and several of their properties. Neutrosophic sets and systems, 50(1), 28.

  18. [18] https://digitalrepository.unm.edu/nss_journal?utm_source=digitalrepository.unm.edu%2Fnss_journa%2Fvol50%2Fiss1%2F28&ut

  19. [19] m_medium=PDF&utm_campaign=PDFCoverPages

  20. [20] Hamidi, M., Smarandache, F., & Taghinezhad, M. (2023). Decision making based on valued fuzzy superhypergraphs. Computer modeling in

  21. [21] engineering & sciences, 138(2), 1907-1923. https://doi.org/10.32604/cmes.2023.030284

  22. [22] Fujita, T. (2025). An introduction and reexamination of molecular hypergraph and molecular n

  23. [23] superhypergraph. Asian journal of physical and chemical sciences, 13(3), 1-38. https://doi.org/10.9734/ajopacs/2025/v13i3248

  24. [24] Berrocal Villegas, S. M., Montalvo Fritas, W., Berrocal Villegas, C. R., Flores Fuentes Rivera, M. Y., Espejo Rivera, R., Bautista

  25. [25] Puma, L. D., & Macazana Fernández, D. M. (2025). Using plithogenic n-SuperHyperGraphs to assess the degree of relationship

  26. [26] between information skills and digital competencies. Neutrosophic sets and systems, 84(1), 41.

  27. [27] https://digitalrepository.unm.edu/nss_journal?utm_source=digitalrepository.unm.edu%2Fnss_journal

  28. [28] %2Fvol84%2Fiss1%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages

  29. [29] Zhu, S. (2025). Neutrosophic n-superhypernetwork: A new approach for evaluating short video communication effectiveness in me

  30. [30] dia convergence. Neutrosophic sets and systems, 85, 1004-1017. https://fs.unm.edu/nss8/index.php/111/article/download/6351/2689

  31. [31] Al-Odhari, A. (2025). Neutrosophic power-set and neutrosophic hyper-structure of neutrosophic set of three

  32. [32] types. Annals of pure and applied mathematics, 31(2), 125-146. http://www.researchmathsci.org/apamart/APAM-v31n2-5.pdf

  33. [33] Hjorth, G. (2005). T. Jech. Set theory. The third millennium edition, revised and expanded. Springer-Verlag, Berlin, 2003, viii+ 769

  34. [34] pp. Bulletin of symbolic logic, 11(2), 243-245. https://doi.org/10.1017/S1079898600003358

  35. [35] Smarandache, F. (2024). The cardinal of the m-powerset of a set of n elements used in the superhyperstructures and neutrosophic

  36. [36] superhyperstructures. Systems assessment and engineering management, 2, 19–22. https://doi.org/10.61356/J.SAEM.2024.2436

  37. [37] Das, A. K., Das, R., Das, S., Debnath, B. K., Granados, C., Shil, B., & Das, R. (2025). A comprehensive study of neutrosophic

  38. [38] superhyper bci-semigroups and their algebraic significance. Transactions on fuzzy sets and systems, 8(2), 80.

  39. [39] https://doi.org/10.71602/tfss.2025.1198050

  40. [40] Smarandache, F. S. (2023). Neutrosophic superhyperstructure: current understanding and future directions, Neutrosophic systems

  41. [41] with applications, 12, 68-76. https://doi.org/10.61356/j.nswa.2023.115

  42. [42] Bretto, A. (2013). Hypergraph theory. In An introduction. Mathematical engineering. Cham: Springer, 1, 209-216.

  43. [43] https://doi.org/10.1007/978-3-319-00080-0

  44. [44] Huang, M., & Li, F. (2025). Modeling cross-cultural competence in vocational education internationalization using neutrosophic

  45. [45] superhyperfunctions and big data driven cultural clusters. Neutrosophic sets and systems, 88(1), 25.

  46. [46] https://digitalrepository.unm.edu/nss_journal?utm_source=digitalrepository.unm.edu%2Fnss_journal

  47. [47] %2Fvol88%2Fiss1%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages

  48. [48] Fujita | J. Intell. Decis. Comput. Model. 1(3) (2025) 158-171

  49. [49] Smarandache, F. (2020). Extension of hypergraph to n-superhypergraph and to plithogenic n-superhypergraph, and extension of hyperalgebra to

  50. [50] n-ary (classical-/neutro-/anti-) hyperalgebra. Neutrosophic sets and systems, 3, 291-296. https://B2n.ir/nu4078

  51. [51] Xie, Y. (2025). A neutrosophic superhyper number framework for accurate statistical evaluation of financial performance in high-tech

  52. [52] enterprises. Neutrosophic sets and systems, 88(1), 58. https://digitalrepository.unm.edu/nss_journal/vol88/iss1/58?

  53. [53] utm_source=digitalrepository.unm.edu%2Fnss_journal%2Fvol88%2Fiss1%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages

  54. [54] Fujita, T., & Smarandache, F. (2024). Advancing uncertain combinatorics through graphization, hyperization, and uncertainization: Fuzzy,

  55. [55] neutrosophic, soft, rough, and beyond: Second volume. Biblio Publishing. https://doi.org/10.48550/arXiv.2411.17411

  56. [56] Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X

  57. [57] Zadeh, L. A. (1996). Fuzzy logic, neural networks, and soft computing. In Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers by Lotfi

  58. [58] A Zadeh (pp. 775-782). https://doi.org/10.1142/9789814261302_0040

  59. [59] Nishad, T. M., Al-Hawary, T. A., & Harif, B. M. (2023). General fuzzy graphs. Ratio mathematica, 47, 235-243.

  60. [60] http://dx.doi.org/10.23755/rm.v47i0.853

  61. [61] Rosenfeld, A. (1975). Fuzzy graphs. In Fuzzy sets and their applications to cognitive and decision processes (pp. 77-95). Academic press.

  62. [62] https://doi.org/10.1016/B978-0-12-775260-0.50008-6

  63. [63] Talal, A. H. (2011). Complete fuzzy graphs. Mathematical combinatorics, 4, 26-34. https://fs.unm.edu/IJMC/CompleteFuzzyGraphs.pdf

  64. [64] Farshi, M., & Davvaz, B. (2016). Generalized fuzzy hypergraphs and hypergroupoids. Filomat, 30(9), 2375-2387.

  65. [65] https://www.jstor.org/stable/24899255

  66. [66] Samanta, S., & Pal, M. (2012). Bipolar fuzzy hypergraphs. International journal of fuzzy logic systems, 2(1), 17-28.

  67. [67] https://doi.org/10.5121/ijfls.2012.2103 17

  68. [68] Akram, M., & Luqman, A. (2020). Fuzzy hypergraphs and related extensions. Springer Singapore.

  69. [69] https://doi.org/10.1007/978-981-15-2403-5

  70. [70] Mordeson, J. N., & Nair, P. S. (2012). Fuzzy graphs and fuzzy hypergraphs (Vol. 46). Physica. https://doi.org/10.1007/978-3-7908-1854-3

  71. [71] Alqahtani, M. (2025). Intuitionistic fuzzy quasi-supergraph integration for social network decision making. International journal of

  72. [72] analysis and applications, 23, 137-137. https://doi.org/10.28924/2291-8639-23-2025-137

  73. [73] Fujita, T. (2025). Extensions of multidirected graphs: Fuzzy, neutrosophic, plithogenic, soft, hypergraph, and superhypergraph vari

  74. [74] ants. International journal of topology 2(3), 11. https://doi.org/10.3390/ijt2030011

  75. [75] Fujita, T., & Smarandache, F. (2025). Directed n-superhypergraphs incorporating bipolar fuzzy information: A multi-tier framework

  76. [76] for modeling bipolar uncertainty in complex networks. Neutrosophic sets and systems, 88, 164-183. https://doi.org/10.5281/zenodo.15775233

  77. [77] Kearnes, S., McCloskey, K., Berndl, M., Pande, V., & Riley, P. (2016). Molecular graph convolutions: Moving beyond fingerprints. Jour

  78. [78] nal of computer-aided molecular design, 30(8), 595-608. https://doi.org/10.1007/s10822-016-9938-8

  79. [79] Gutman, I., & Estrada, E. (1996). Topological indices based on the line graph of the molecular graph. Journal of chemical information and

  80. [80] computer sciences, 36(3), 541-543. https://doi.org/10.1021/ci950143i

  81. [81] You, J., Liu, B., Ying, Z., Pande, V., & Leskovec, J. (2018). Graph convolutional policy network for goal-directed molecular graph

  82. [82] generation. In 32nd conference on neural information processing systems (NeurIPS 2018), Montréal, Canada (pp. 1-12).

  83. [83] https://proceedings.neurips.cc/paper_files/paper/2018/file/d60678e8f2ba9c540798ebbde31177e8-Paper.pdf

  84. [84] Gasteiger, J., Groß, J., & Günnemann, S. (2020). Directional message passing for molecular graphs.

  85. [85] https://doi.org/10.48550/arXiv.2003.03123 [40] Jin, W., Barzilay, R., & Jaakkola, T. (2020). Hierarchical generation of molecular graphs us

  86. [86] ing structural motifs. In International conference on machine learning (pp. 4839-4848). PMLR. https://proceedings.mlr.press/v119/jin20a.html

  87. [87] Jin, W., Barzilay, R., & Jaakkola, T. (2018). Junction tree variational autoencoder for molecular graph generation. In International confer

  88. [88] ence on machine learning (pp. 2323-2332). PMLR. https://proceedings.mlr.press/v80/jin18a

  89. [89] Rahman, A., Poirel, C. L., Badger, D. J., & Murali, T. M. (2012, October). Reverse engineering molecular hypergraphs. In Proceedings

  90. [90] of the ACM conference on bioinformatics, computational biology and biomedicine (pp. 68-75). https://doi.org/10.1145/2382936.2382945

  91. [91] Chen,

  92. [92] J.,

  93. [93] &

  94. [94] Schwaller, P. (2024). Molecular hypergraph neural networks. The journal of chemical physics,

  95. [95] (14). https://doi.org/10.1063/5.0193557

  96. [96] Kajino, H. (2019, May). Molecular hypergraph grammar with its application to molecular optimization. In international conference on

  97. [97] machine learning (pp. 3183-3191). PMLR. https://proceedings.mlr.press/v97/kajino19a

  98. [98] Lu, J., Zhu, L., & Gao, W. (2022). Cyclic connectivity index of bipolar fuzzy incidence graph. Open chemistry, 20(1),

  99. [99] -341. https://doi.org/10.1515/chem-2022-0149

  100. [100] Gong, S., & Hua, G. (2021). Topological indices of bipolar fuzzy incidence graph. Open chemistry, 19(1), 894-903.

  101. [101] https://doi.org/10.1515/chem-2021-0082/html

  102. [102] Cabrol-Bass, D., Laude, I., Laidboeur, T., & Bangov, I. P. (1995). Fuzzy molecular graphs in a decision support system for molecular

  103. [103] structure elucidation. In AIP conference proceedings (Vol. 330, No. 1, pp. 610-617). American Institute of Physics.

  104. [104] https://doi.org/10.1063/1.47767

  105. [105] Sebastian, L. (2021). Topological indices of molecular graphs of some anti-cancer drugs. SGS-engineering & sciences, 1(01).

  106. [106] https://spast.org/techrep/article/view/604

  107. [107] Lane, C. F. (1976). Reduction of organic compounds with diborane. Chemical reviews, 76(6), 773-799.

  108. [108] https://doi.org/doi/pdf/10.1021/cr60304a005

  109. [109] Molecular fuzzy graphs, hypergraphs, and superhypergraphs

  110. [110] Mulliken, R. S. (1947). The structure of diborane and related molecules. Chemical reviews, 41(2), 207-217.

  111. [111] https://doi.org/10.1021/cr60129a002

  112. [112] Lang, J., Hewer, J. M., Meyer, J., Schuchmann, J., van Wüllen, C., & Niedner-Schatteburg, G. (2018). Magnetostructural correlation in

  113. [113] isolated trinuclear iron (III) oxo acetate complexes. Physical chemistry chemical physics, 20(24), 16673-16685.

  114. [114] https://doi.org/10.1039/C7CP07549A

  115. [115] Allinger, N. L., & Lii, J. H. (1987). Benzene, aromatic rings, van der Waals molecules, and crystals of aromatic molecules in molecular

  116. [116] mechanics (MM3). Journal of computational chemistry, 8(8), 1146-1153. https://doi.org/10.1002/jcc.540080812

  117. [117] Rauwerdink, A., & Kazlauskas, R. J. (2015). How the same core catalytic machinery catalyzes 17 different reactions: The serine-his

  118. [118] tidine-aspartate catalytic triad of α/β-hydrolase fold enzymes. ACS catalysis, 5(10), 6153-6176. https://doi.org/10.1021/acscatal.5b01539

  119. [119] Rempe, S. B., & Pratt, L. R. (2001). The hydration number of Na+ in liquid water. Fluid phase equilibria, 183, 121-132.

  120. [120] https://doi.org/10.1016/S0378-3812(01)00426-5

  121. [121] Hammouda, B. (2013). Temperature effect on the nanostructure of SDS micelles in water. Journal of research of the national institute of

  122. [122] standards and technology, 118, 151. https://doi.org/10.6028/jres.118.008

  123. [123] Parvathi, R., Karunambigai, M. G., & Atanassov, K. T. (2009). Operations on intuitionistic fuzzy graphs. In 2009 IEEE international

  124. [124] conference on fuzzy systems (pp. 1396-1401). IEEE. https://doi.org/10.1109/FUZZY.2009.5277067

  125. [125] Akram, M., Davvaz, B., & Feng, F. (2013). Intuitionistic fuzzy soft K-algebras. Mathematics in computer science, 7(3), 353-365.

  126. [126] https://doi.org/10.1007/s11786-013-0158-5

  127. [127] Akram, M., Malik, H. M., Shahzadi, S., & Smarandache, F. (2018). Neutrosophic soft rough graphs with application. Axioms, 7(1), 14.

  128. [128] https://doi.org/10.3390/axioms7010014

  129. [129] Smarandache, F., Broumi, S., Talea, M., & Bakali, A. (2016). Single valued neutrosophic graphs: degree, order and size. In 2016 IEEE

  130. [130] international conference on fuzzy systems (FUZZ), pp. 2444-2451. (p. 2444). IEEE. https://digitalrepository.unm.edu/math_fsp?utm_

  131. [131] source=digitalrepository.unm.edu%2Fmath_fsp%2F404&utm_medium=PDF&utm_campaign=PDFCoverPages

  132. [132] Broumi, S., Talea, M., Bakali, A., & Smarandache, F. (2016). Interval valued neutrosophic graphs. Infinite Study. https://fs.unm.edu/In

  133. [133] tervalValuedNeutrosophicGraphs-CR12.pdf

  134. [134] Akram, M., & Shahzadi, S. (2017). Neutrosophic soft graphs with application. Journal of intelligent & fuzzy systems, 32(1), 841-858.

  135. [135] https://doi.org/10.3233/JIFS-16090

  136. [136] Ghosh, J., & Samanta, T. K. (2012). Hyperfuzzy set and hyperfuzzy group. International journal of advanced science and technology, 41,

  137. [137] -38. https://www.earticle.net/Article/A206708

  138. [138] Liu, Y. L., Kim, H. S., & Neggers, J. (2017). Hyperfuzzy subsets and subgroupoids. Journal of intelligent & fuzzy systems, 33(3), 1553

  139. [139] https://doi.org/10.3233/JIFS-17104

  140. [140] Sultana, F., Gulistan, M., Ali, M., Yaqoob, N., Khan, M., Rashid, T., & Ahmed, T. (2023). A study of plithogenic graphs: applications

  141. [141] in spreading coronavirus disease (covid-19) globally. Journal of ambient intelligence and humanized computing, 14(10), 13139-13159.

  142. [142] https://doi.org/10.1007/s12652-022-03772-6

  143. [143] Vizuete, G. X., Gallardo, C. F., & Vizuete, G. (2025). Structured analysis of a generator set lubrication system using vertex articula

  144. [144] tion in plithogenic n-superhypergraphs. neutrosophic sets and systems, 89(1), 8. https://digitalrepository.unm.edu/nss_journal/vol89/iss1/8/

  145. [145] Crespo-Berti, L. A., Isea Argüelles, J. J., & Villa Zura, M. P. (2025). Effectiveness of dogmatic criminal law reasoning in the perma

  146. [146] nent structure of the general theory of crime and punishment through plithogenic n-superhypergraphs. Neutrosophic sets and systems, 89

  147. [147] (1), 39. https://digitalrepository.unm.edu/nss_journal/vol89/iss1/39/

  148. [148] Takaaki Fujita and Arif Mehmood. (2025). A study on the effectiveness of contradiction values in upside-down logic and de

  149. [149] plithogenication within plithogenic sets. Neutrosophic computing and machine learning, 40(1), 28–65.

  150. [150] Kandasamy, W. V., Ilanthenral, K., & Smarandache, F. (2020). Plithogenic Graphs. Infinite Study. https://fs.unm.edu/Plithogenic

  151. [151] Graphs.pd

Published

2025-09-05

How to Cite

Fujita, T. (2025). Molecular Fuzzy Graphs, Hypergraphs, and Superhypergraphs. Journal of Intelligent Decision and Computational Modelling, 1(3), 158-171. https://doi.org/10.48314/jidcm.v1i3.64