Molecular Fuzzy Graphs, Hypergraphs, and Superhypergraphs
Abstract
Graph theory provides a framework for clearly representing relationships between objects [1, 2]. In the
fields of chemistry and biology, graph-based concepts are widely applied. Hypergraphs generalize classical
graphs by allowing hyperedges to connect any nonempty subset of vertices [3]. Superhypergraphs extend
this concept by iterating the powerset operation, thereby generating nested layers that capture hierarchical
and self-referential structures among collections of vertices [4]. A molecular graph models a molecule with
atoms as vertices and bonds as edges, representing its structural connectivity. Fuzzy graphs and fuzzy
hypergraphs enrich these structures by assigning membership degrees to vertices and (hyper)edges. In
this paper, we introduce definitions of molecular fuzzy graphs, hypergraphs, and superhypergraphs, and
examine their properties and potential applications.
References
- [1] Diestel, R. (2025). Graph theory (Vol. 173). Springer Nature. https://doi.org/10.1007/978-3-662-70107-2
- [2] Gross, J. L., Yellen, J., & Anderson, M. (2018). Graph theory and its applications. Chapman and Hall/CRC.
- [3] https://doi.org/10.1201/9780429425134
- [4] Berge, C. (1984). Hypergraphs: combinatorics of finite sets (Vol. 45). Elsevier.Hypergraphs, Volume 45 - 1st Edition | Elsevier Shop
- [5] Hamidi, M., Smarandache, F., & Davneshvar, E. (2022). Spectrum of superhypergraphs via flows. Journal of mathematics, 2022(1),
- [6] https://doi.org/10.1155/2022/9158912
- [7] Akram, M., Gani, A. N., & Saeid, A. B. (2014). Vague hypergraphs. Journal of intelligent & fuzzy systems, 26(2), 647-653.
- [8] https://doi.org/10.3233/IFS-120756
- [9] Feng, Y., You, H., Zhang, Z., Ji, R., & Gao, Y. (2019). Hypergraph neural networks. In Proceedings of the AAAI conference on artificial in
- [10] telligence (Vol. 33, No. 01, pp. 3558-3565). https://doi.org/10.1609/aaai.v33i01.33013558
- [11] Gottlob, G., Leone, N., & Scarcello, F. (1999, May). Hypertree decompositions and tractable queries. In Proceedings of the eighteenth
- [12] ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems (pp. 21-32). https://doi.org /10.1145/303976.303979
- [13] Valencia, E. M. C., Vásquez, J. P. C., & Lois, F. A. B. (2025). Multineutrosophic analysis of the relationship between survival and busi
- [14] ness growth in the manufacturing sector of azuay province, 2020–2023, using plithogenic n-superhypergraphs. Neutrosophic sets and
- [15] systems, 84, 341-355. https://doi.org/10.5281/zenodo.15640723
- [16] Ghods, M., Rostami, Z., & Smarandache, F. (2022). Introduction to neutrosophic restricted superhypergraphs and neutrosophic re
- [17] stricted superhypertrees and several of their properties. Neutrosophic sets and systems, 50(1), 28.
- [18] https://digitalrepository.unm.edu/nss_journal?utm_source=digitalrepository.unm.edu%2Fnss_journa%2Fvol50%2Fiss1%2F28&ut
- [19] m_medium=PDF&utm_campaign=PDFCoverPages
- [20] Hamidi, M., Smarandache, F., & Taghinezhad, M. (2023). Decision making based on valued fuzzy superhypergraphs. Computer modeling in
- [21] engineering & sciences, 138(2), 1907-1923. https://doi.org/10.32604/cmes.2023.030284
- [22] Fujita, T. (2025). An introduction and reexamination of molecular hypergraph and molecular n
- [23] superhypergraph. Asian journal of physical and chemical sciences, 13(3), 1-38. https://doi.org/10.9734/ajopacs/2025/v13i3248
- [24] Berrocal Villegas, S. M., Montalvo Fritas, W., Berrocal Villegas, C. R., Flores Fuentes Rivera, M. Y., Espejo Rivera, R., Bautista
- [25] Puma, L. D., & Macazana Fernández, D. M. (2025). Using plithogenic n-SuperHyperGraphs to assess the degree of relationship
- [26] between information skills and digital competencies. Neutrosophic sets and systems, 84(1), 41.
- [27] https://digitalrepository.unm.edu/nss_journal?utm_source=digitalrepository.unm.edu%2Fnss_journal
- [28] %2Fvol84%2Fiss1%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
- [29] Zhu, S. (2025). Neutrosophic n-superhypernetwork: A new approach for evaluating short video communication effectiveness in me
- [30] dia convergence. Neutrosophic sets and systems, 85, 1004-1017. https://fs.unm.edu/nss8/index.php/111/article/download/6351/2689
- [31] Al-Odhari, A. (2025). Neutrosophic power-set and neutrosophic hyper-structure of neutrosophic set of three
- [32] types. Annals of pure and applied mathematics, 31(2), 125-146. http://www.researchmathsci.org/apamart/APAM-v31n2-5.pdf
- [33] Hjorth, G. (2005). T. Jech. Set theory. The third millennium edition, revised and expanded. Springer-Verlag, Berlin, 2003, viii+ 769
- [34] pp. Bulletin of symbolic logic, 11(2), 243-245. https://doi.org/10.1017/S1079898600003358
- [35] Smarandache, F. (2024). The cardinal of the m-powerset of a set of n elements used in the superhyperstructures and neutrosophic
- [36] superhyperstructures. Systems assessment and engineering management, 2, 19–22. https://doi.org/10.61356/J.SAEM.2024.2436
- [37] Das, A. K., Das, R., Das, S., Debnath, B. K., Granados, C., Shil, B., & Das, R. (2025). A comprehensive study of neutrosophic
- [38] superhyper bci-semigroups and their algebraic significance. Transactions on fuzzy sets and systems, 8(2), 80.
- [39] https://doi.org/10.71602/tfss.2025.1198050
- [40] Smarandache, F. S. (2023). Neutrosophic superhyperstructure: current understanding and future directions, Neutrosophic systems
- [41] with applications, 12, 68-76. https://doi.org/10.61356/j.nswa.2023.115
- [42] Bretto, A. (2013). Hypergraph theory. In An introduction. Mathematical engineering. Cham: Springer, 1, 209-216.
- [43] https://doi.org/10.1007/978-3-319-00080-0
- [44] Huang, M., & Li, F. (2025). Modeling cross-cultural competence in vocational education internationalization using neutrosophic
- [45] superhyperfunctions and big data driven cultural clusters. Neutrosophic sets and systems, 88(1), 25.
- [46] https://digitalrepository.unm.edu/nss_journal?utm_source=digitalrepository.unm.edu%2Fnss_journal
- [47] %2Fvol88%2Fiss1%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
- [48] Fujita | J. Intell. Decis. Comput. Model. 1(3) (2025) 158-171
- [49] Smarandache, F. (2020). Extension of hypergraph to n-superhypergraph and to plithogenic n-superhypergraph, and extension of hyperalgebra to
- [50] n-ary (classical-/neutro-/anti-) hyperalgebra. Neutrosophic sets and systems, 3, 291-296. https://B2n.ir/nu4078
- [51] Xie, Y. (2025). A neutrosophic superhyper number framework for accurate statistical evaluation of financial performance in high-tech
- [52] enterprises. Neutrosophic sets and systems, 88(1), 58. https://digitalrepository.unm.edu/nss_journal/vol88/iss1/58?
- [53] utm_source=digitalrepository.unm.edu%2Fnss_journal%2Fvol88%2Fiss1%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
- [54] Fujita, T., & Smarandache, F. (2024). Advancing uncertain combinatorics through graphization, hyperization, and uncertainization: Fuzzy,
- [55] neutrosophic, soft, rough, and beyond: Second volume. Biblio Publishing. https://doi.org/10.48550/arXiv.2411.17411
- [56] Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
- [57] Zadeh, L. A. (1996). Fuzzy logic, neural networks, and soft computing. In Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers by Lotfi
- [58] A Zadeh (pp. 775-782). https://doi.org/10.1142/9789814261302_0040
- [59] Nishad, T. M., Al-Hawary, T. A., & Harif, B. M. (2023). General fuzzy graphs. Ratio mathematica, 47, 235-243.
- [60] http://dx.doi.org/10.23755/rm.v47i0.853
- [61] Rosenfeld, A. (1975). Fuzzy graphs. In Fuzzy sets and their applications to cognitive and decision processes (pp. 77-95). Academic press.
- [62] https://doi.org/10.1016/B978-0-12-775260-0.50008-6
- [63] Talal, A. H. (2011). Complete fuzzy graphs. Mathematical combinatorics, 4, 26-34. https://fs.unm.edu/IJMC/CompleteFuzzyGraphs.pdf
- [64] Farshi, M., & Davvaz, B. (2016). Generalized fuzzy hypergraphs and hypergroupoids. Filomat, 30(9), 2375-2387.
- [65] https://www.jstor.org/stable/24899255
- [66] Samanta, S., & Pal, M. (2012). Bipolar fuzzy hypergraphs. International journal of fuzzy logic systems, 2(1), 17-28.
- [67] https://doi.org/10.5121/ijfls.2012.2103 17
- [68] Akram, M., & Luqman, A. (2020). Fuzzy hypergraphs and related extensions. Springer Singapore.
- [69] https://doi.org/10.1007/978-981-15-2403-5
- [70] Mordeson, J. N., & Nair, P. S. (2012). Fuzzy graphs and fuzzy hypergraphs (Vol. 46). Physica. https://doi.org/10.1007/978-3-7908-1854-3
- [71] Alqahtani, M. (2025). Intuitionistic fuzzy quasi-supergraph integration for social network decision making. International journal of
- [72] analysis and applications, 23, 137-137. https://doi.org/10.28924/2291-8639-23-2025-137
- [73] Fujita, T. (2025). Extensions of multidirected graphs: Fuzzy, neutrosophic, plithogenic, soft, hypergraph, and superhypergraph vari
- [74] ants. International journal of topology 2(3), 11. https://doi.org/10.3390/ijt2030011
- [75] Fujita, T., & Smarandache, F. (2025). Directed n-superhypergraphs incorporating bipolar fuzzy information: A multi-tier framework
- [76] for modeling bipolar uncertainty in complex networks. Neutrosophic sets and systems, 88, 164-183. https://doi.org/10.5281/zenodo.15775233
- [77] Kearnes, S., McCloskey, K., Berndl, M., Pande, V., & Riley, P. (2016). Molecular graph convolutions: Moving beyond fingerprints. Jour
- [78] nal of computer-aided molecular design, 30(8), 595-608. https://doi.org/10.1007/s10822-016-9938-8
- [79] Gutman, I., & Estrada, E. (1996). Topological indices based on the line graph of the molecular graph. Journal of chemical information and
- [80] computer sciences, 36(3), 541-543. https://doi.org/10.1021/ci950143i
- [81] You, J., Liu, B., Ying, Z., Pande, V., & Leskovec, J. (2018). Graph convolutional policy network for goal-directed molecular graph
- [82] generation. In 32nd conference on neural information processing systems (NeurIPS 2018), Montréal, Canada (pp. 1-12).
- [83] https://proceedings.neurips.cc/paper_files/paper/2018/file/d60678e8f2ba9c540798ebbde31177e8-Paper.pdf
- [84] Gasteiger, J., Groß, J., & Günnemann, S. (2020). Directional message passing for molecular graphs.
- [85] https://doi.org/10.48550/arXiv.2003.03123 [40] Jin, W., Barzilay, R., & Jaakkola, T. (2020). Hierarchical generation of molecular graphs us
- [86] ing structural motifs. In International conference on machine learning (pp. 4839-4848). PMLR. https://proceedings.mlr.press/v119/jin20a.html
- [87] Jin, W., Barzilay, R., & Jaakkola, T. (2018). Junction tree variational autoencoder for molecular graph generation. In International confer
- [88] ence on machine learning (pp. 2323-2332). PMLR. https://proceedings.mlr.press/v80/jin18a
- [89] Rahman, A., Poirel, C. L., Badger, D. J., & Murali, T. M. (2012, October). Reverse engineering molecular hypergraphs. In Proceedings
- [90] of the ACM conference on bioinformatics, computational biology and biomedicine (pp. 68-75). https://doi.org/10.1145/2382936.2382945
- [91] Chen,
- [92] J.,
- [93] &
- [94] Schwaller, P. (2024). Molecular hypergraph neural networks. The journal of chemical physics,
- [95] (14). https://doi.org/10.1063/5.0193557
- [96] Kajino, H. (2019, May). Molecular hypergraph grammar with its application to molecular optimization. In international conference on
- [97] machine learning (pp. 3183-3191). PMLR. https://proceedings.mlr.press/v97/kajino19a
- [98] Lu, J., Zhu, L., & Gao, W. (2022). Cyclic connectivity index of bipolar fuzzy incidence graph. Open chemistry, 20(1),
- [99] -341. https://doi.org/10.1515/chem-2022-0149
- [100] Gong, S., & Hua, G. (2021). Topological indices of bipolar fuzzy incidence graph. Open chemistry, 19(1), 894-903.
- [101] https://doi.org/10.1515/chem-2021-0082/html
- [102] Cabrol-Bass, D., Laude, I., Laidboeur, T., & Bangov, I. P. (1995). Fuzzy molecular graphs in a decision support system for molecular
- [103] structure elucidation. In AIP conference proceedings (Vol. 330, No. 1, pp. 610-617). American Institute of Physics.
- [104] https://doi.org/10.1063/1.47767
- [105] Sebastian, L. (2021). Topological indices of molecular graphs of some anti-cancer drugs. SGS-engineering & sciences, 1(01).
- [106] https://spast.org/techrep/article/view/604
- [107] Lane, C. F. (1976). Reduction of organic compounds with diborane. Chemical reviews, 76(6), 773-799.
- [108] https://doi.org/doi/pdf/10.1021/cr60304a005
- [109] Molecular fuzzy graphs, hypergraphs, and superhypergraphs
- [110] Mulliken, R. S. (1947). The structure of diborane and related molecules. Chemical reviews, 41(2), 207-217.
- [111] https://doi.org/10.1021/cr60129a002
- [112] Lang, J., Hewer, J. M., Meyer, J., Schuchmann, J., van Wüllen, C., & Niedner-Schatteburg, G. (2018). Magnetostructural correlation in
- [113] isolated trinuclear iron (III) oxo acetate complexes. Physical chemistry chemical physics, 20(24), 16673-16685.
- [114] https://doi.org/10.1039/C7CP07549A
- [115] Allinger, N. L., & Lii, J. H. (1987). Benzene, aromatic rings, van der Waals molecules, and crystals of aromatic molecules in molecular
- [116] mechanics (MM3). Journal of computational chemistry, 8(8), 1146-1153. https://doi.org/10.1002/jcc.540080812
- [117] Rauwerdink, A., & Kazlauskas, R. J. (2015). How the same core catalytic machinery catalyzes 17 different reactions: The serine-his
- [118] tidine-aspartate catalytic triad of α/β-hydrolase fold enzymes. ACS catalysis, 5(10), 6153-6176. https://doi.org/10.1021/acscatal.5b01539
- [119] Rempe, S. B., & Pratt, L. R. (2001). The hydration number of Na+ in liquid water. Fluid phase equilibria, 183, 121-132.
- [120] https://doi.org/10.1016/S0378-3812(01)00426-5
- [121] Hammouda, B. (2013). Temperature effect on the nanostructure of SDS micelles in water. Journal of research of the national institute of
- [122] standards and technology, 118, 151. https://doi.org/10.6028/jres.118.008
- [123] Parvathi, R., Karunambigai, M. G., & Atanassov, K. T. (2009). Operations on intuitionistic fuzzy graphs. In 2009 IEEE international
- [124] conference on fuzzy systems (pp. 1396-1401). IEEE. https://doi.org/10.1109/FUZZY.2009.5277067
- [125] Akram, M., Davvaz, B., & Feng, F. (2013). Intuitionistic fuzzy soft K-algebras. Mathematics in computer science, 7(3), 353-365.
- [126] https://doi.org/10.1007/s11786-013-0158-5
- [127] Akram, M., Malik, H. M., Shahzadi, S., & Smarandache, F. (2018). Neutrosophic soft rough graphs with application. Axioms, 7(1), 14.
- [128] https://doi.org/10.3390/axioms7010014
- [129] Smarandache, F., Broumi, S., Talea, M., & Bakali, A. (2016). Single valued neutrosophic graphs: degree, order and size. In 2016 IEEE
- [130] international conference on fuzzy systems (FUZZ), pp. 2444-2451. (p. 2444). IEEE. https://digitalrepository.unm.edu/math_fsp?utm_
- [131] source=digitalrepository.unm.edu%2Fmath_fsp%2F404&utm_medium=PDF&utm_campaign=PDFCoverPages
- [132] Broumi, S., Talea, M., Bakali, A., & Smarandache, F. (2016). Interval valued neutrosophic graphs. Infinite Study. https://fs.unm.edu/In
- [133] tervalValuedNeutrosophicGraphs-CR12.pdf
- [134] Akram, M., & Shahzadi, S. (2017). Neutrosophic soft graphs with application. Journal of intelligent & fuzzy systems, 32(1), 841-858.
- [135] https://doi.org/10.3233/JIFS-16090
- [136] Ghosh, J., & Samanta, T. K. (2012). Hyperfuzzy set and hyperfuzzy group. International journal of advanced science and technology, 41,
- [137] -38. https://www.earticle.net/Article/A206708
- [138] Liu, Y. L., Kim, H. S., & Neggers, J. (2017). Hyperfuzzy subsets and subgroupoids. Journal of intelligent & fuzzy systems, 33(3), 1553
- [139] https://doi.org/10.3233/JIFS-17104
- [140] Sultana, F., Gulistan, M., Ali, M., Yaqoob, N., Khan, M., Rashid, T., & Ahmed, T. (2023). A study of plithogenic graphs: applications
- [141] in spreading coronavirus disease (covid-19) globally. Journal of ambient intelligence and humanized computing, 14(10), 13139-13159.
- [142] https://doi.org/10.1007/s12652-022-03772-6
- [143] Vizuete, G. X., Gallardo, C. F., & Vizuete, G. (2025). Structured analysis of a generator set lubrication system using vertex articula
- [144] tion in plithogenic n-superhypergraphs. neutrosophic sets and systems, 89(1), 8. https://digitalrepository.unm.edu/nss_journal/vol89/iss1/8/
- [145] Crespo-Berti, L. A., Isea Argüelles, J. J., & Villa Zura, M. P. (2025). Effectiveness of dogmatic criminal law reasoning in the perma
- [146] nent structure of the general theory of crime and punishment through plithogenic n-superhypergraphs. Neutrosophic sets and systems, 89
- [147] (1), 39. https://digitalrepository.unm.edu/nss_journal/vol89/iss1/39/
- [148] Takaaki Fujita and Arif Mehmood. (2025). A study on the effectiveness of contradiction values in upside-down logic and de
- [149] plithogenication within plithogenic sets. Neutrosophic computing and machine learning, 40(1), 28–65.
- [150] Kandasamy, W. V., Ilanthenral, K., & Smarandache, F. (2020). Plithogenic Graphs. Infinite Study. https://fs.unm.edu/Plithogenic
- [151] Graphs.pd