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Abstract

Data Envelopment Analysis (DEA) is a powerful non-parametric method used to evaluate the relative efficiency
of Decision-Making Units (DMUs). The cross-efficiency method has been introduced as an extension of DEA,
enabling each unit to be evaluated not only by its own optimal weights but also by the weights of its peers. By
integrating DEA and the cross-efficiency method, a more reliable ranking of DMUs can be achieved, enhancing
the discriminative power of the evaluation and supporting better decision-making. Alcaraz et al. [1] proposed a
method to determine the ranking range of DMUs within the cross-efficiency evaluation. Their proposed models
were non-linear. In this article, we use the goal-programming method and convert the nonlinear models into LPs
to explore the best and worst ranks for each DMU. Our proposed method and the presented linear models are

easier to solve and requite less time and computation for systems.

Keywords: Data envelopment analysis, Cross-efficiency, Ranking ranges, Goal-programming, Best and worst rank.

1| Introduction

In recent years, there has been a wide range of Data Envelopment Analysis (DEA) applications for evaluating
the performance of entities engaged in diverse activities, contexts, and countries. DEA is a non-parametric
method based on Linear Programming (LP) to determine efficient and inefficient Decision-Making Units
(DMUs) and compare their efficiencies. Performance evaluation is typically expressed as a ratio, such as
output/input. This is commonly referred to as an efficiency measure, which is less than or equal to 1.
Measuring total performance, especially when there are multiple inputs and outputs, presents challenges such
as selecting appropriate weights for the inputs and outputs to calculate the output/input ratio for efficiency
measurement [2]. These weights are chosen so that each is evaluated under the most favorable conditions.
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The DEA model was first proposed by Charnes et al. [2] to obtain efficiency scores for DMUs (the CCR
model) and to identify efficient and inefficient units. Subsequently, Banker et al.|3] introduced the BCC model,
and others have since extended it. Another important topic for managers is ranking DMUs by performance.
Many studies have been conducted in this area; for example, Andersen and Petersen [4] proposed a ranking
method. They removed the DMU under evaluation from the Production Possibility Set (PPS) and applied the
model to the remaining DMUs. However, this approach is infeasible and unstable for specific data sets.

Mehrabian et al. [5] later suggested an LP model, known as the MA] model, for ranking efficient units in the
presence of zero data. However, the MA] model fails in some cases, as demonstrated by a theorem in [5]. In
the MAJ model, unlike the AP model, movement towards the frontier was performed along the input axis
with input orientation and equal steps. This approach removed the instability problem but caused infeasibility
in some data sets. To address this weakness, Saati et al. [6] modified the MAJ model and proved that this
version is always feasible and simultaneously both input- and output-oriented. Jahanshahloo et al. [7]
proposed a ranking method using super-efficiency and the L1-norm. Jahanshahloo et al. [7] proposed a
method for ranking efficient units. Khodabakhshi and Aryavash [8] proposed a ranking method in which the
maximum and minimum efficiency scores for each unit are first computed under the assumption that all units
have equal efficiency scores of 1. Then, by combining the maximum and minimum efficiency scores, the
ranking is determined. Jahanshahloo et al. [9] proposed two new models to rank efficient units based on the

L1-norm and input-output weights.

Ziari and Raissi [10] introduced a new method to rank extremely efficient DMUs in DEA by minimizing the
distance between the virtual DMU and the DMU under evaluation. Ziari [11] introduced another method
that transformed the non-LP model proposed by Jahanshahloo et al. [12] into an LP model to rank
DMUs.Banhidi and Dobos [13] applied a common-weight DEA model to rank Central and Eastern European
countries based on digital readiness indicators. Chen [14] proposes an extended version of super-efficiency
DEA to achieve a complete and stable ranking among DMUs.

Cross-efficiency evaluation is an advanced extension of DEA designed to enhance the discrimination and
ranking of DMUs. Unlike traditional DEA models, which allow each DMU to choose its own optimal
weights, the cross-efficiency method introduces a peer-evaluation process in which each unit is also assessed
using the weights of others. Therefore, the relative efficiency for each DMU is obtained by averaging all
attained efficiencies, allowing DMUs to be ranked. This approach provides more reliable and fair efficiency
scores by considering both self- and peer-assessments. Cross-efficiency evaluation has been used in various
contexts, and some applications of this methodology can be found in research by Sexton et al. [15], who
proposed a cross-efficiency method in which, using DEA, the optimal weights for the multiplier model were
computed. Other studies concerning ranking methods in DEA include those by [12], [16-18].

Liu et al. [19] extended cross-efficiency evaluation to a two-stage DEA framework incorporating dual fairness
constraints, providing a comprehensive and equitable efficiency analysis for multi-process decision-making
systems. Kumar and Al-Hassan [20] applied cross-efficiency DEA and bootstrapped regression to measure
how mobile e-learning influences school management efficiency. Orkcu [21] developed goal-programming
models for use in the second stage of cross-efficiency evaluation in DEA to reduce weight multiplicity and
improve discrimination power. Davtalab [22] introduced a novel secondary objective for cross-efficiency
evaluation that maximizes the number of DMUs that reach their target efficiency.

The main problem in evaluating cross-efficiency is the possibility of multiple optimal DEA weightings, which
may yield different rankings of DMUs. To address this issue, the use of secondary goals to determine weights
was suggested. Sexton et al. [15] and Doyle and Green [23] proposed aggressive and benevolent formulations.
These are examples of models that use an additional criterion to select weights. Extensions of these models
are found in studies conducted by [24] and [17], [18]. Alcaraz et al. [1] proposed a method to determine the
ranking range of DMUs within the cross-efficiency evaluation framework. They calculated the maximum and
minimum cross-efficiency scores for each unit, and their results are more stable than those of traditional DEA
models. In this article, the weights are determined through LP, as in traditional DEA models. However,
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instead of using a single set of optimal weights, the authors compute the maximum and minimum cross-
efficiency scores for each unit by considering all feasible weight combinations. This approach treats weights
as ranges rather than fixed values; therefore, a single rank for each unit cannot be achieved. The rank of each
DMU is determined by the best and worst rankings that the unit could attain. One drawback of their proposed
models is their non-linearity. In this article, we utilize the goal-programming method and convert the models
proposed by Alcaraz et al. [1] into linear models. The advantage of our models is their ease of solution due

to linearity, and the worst and best rankings for each unit are obtained using the same models.

The rest of the paper is organized as follows. Section 2 explains not only the computation of the cross-
efficiency scores for each DMU but also illustrates the method introduced by Alcaraz et al. [1] for obtaining
ranking ranges. Section 3 demonstrates the goal-programming procedure for computing ranking ranges.
Section 4 presents the numerical example, and Section 5 provides the conclusion.

2| Preliminaries

2.1| Data Envelopment Analysis Models

Consider a set of peers observed DMUs (DMUj, j=1,...,n) such that each DMUj produces multiple non-

negative outputs y . (r=1,...,s) utilizing multiple non-negative inputs x_(j=1,..,m)- It is supposed that
1] 1

X; = (X X)) #0,a0d y, =(y, .o y,)" # 0, for each j. Moreover, assume that D, =(x;,y;)" expresses the

input and output vectors of each DMUj, jelJ = {1,...,r1}. It is assumed that there is no duplicate DMU. The

PPS is defined as the set of all possible input-output vectors as follows:

PPS = {(x,y): X can produce by y}.

The following problem computes the efficiency of DMUP:

Suy,

Max 0, =-——r

m 5>

Zvixip
i=1
. 1
ZurYrj ( )
= <

— <1, j=1...,n,
Zvixij
i=1

v,,u, =20, i=1,..,mr=1,...s,

S. t.

where v, =(v,....V,)> U, =(U,,..,u,,) are input and output weights, respectively. Using the method of

converting linear fractional programming into LP suggested by [7], the above-mentioned Mode/ (1) transforms
into the following LP Mode/ (2), which is named CCR proposed by [2]:

S
max 0 = Zuryrp,
r=1
m
s. t. Z:vixip =1,
i=1

m s
—ZvixiP —Z:uryrj <0, 1=1..,n,
i=1 r=1

u, 20,v, 20, r=1,..,s,i=1...m.

@)

Definition 1. DMU,=(x,,y,)is a CCR-efficient unit if and only if the optimal objective function of Mode/

(2) is equal to one; otherwise, it is inefficient.
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2.2 | Cross-Efficiency

Based on the optimal solutions of Mode/ (2), the cross-efficiency evaluation of each DMU can be obtained. If

s

(V;,u;) = (Vrp,... v ufp,...,u:p) is an optimal solution of Mode/ (2) for a given DMU,,, then the cross-efficiency

> Ymp»

of DMUj, j=1,...,n obtained with the weights of DMU,, is the following:
Z}u:pyrj

ol m
.
Z VipXjj
i=1

Then, the cross-efficiency score of DMU; , j=1,...,n is usually defined as the average of the weights of all

0 j=l,..n. 3)

DMUs. It means the cross-efficiency score of DMUj is determined as:

Zepj e . (4)

It is noticed that DEA models may have multiple optimal solutions. This non-uniqueness of input/output
optimal weights would undermine the cross-efficiency concept, as it creates ambiguity in the use of weights
for the computation of final results. In addition, this same problem (multiple optimal weights) sometimes

causes a DMU not to have a unit rating.
2.3 | Cross-Efficiency and Ranking

In classical DEA and cross-efficiency evaluation, each DMU selects input and output weights to maximize
its own efficiency. Sometimes, multiple optimal weights can exist, leading to unstable rankings depending on
the chosen weight. To cope with this problem, Alcaraz et al. [1] proposed a method that, instead of assigning
a single rank to each DMU, calculates a range of possible ranks showing the best and worst positions a DMU
can occupy under all possible optimal weight selections. They defined the best and worst ranks for each unit
as follows: the Best (Worst) rank is the least significant (most significant) achievable across all feasible optimal

weight sets. To achieve the best and worst ranks, they suggested separate integer models.

The best ranking of a DMU, (DMU under evaluation) is obtained with Eg. (5), which is mentioned below:
' =n—-WE_, (&)

where WE, is the optimal solution of the Mode/ (6) expressed as:

max WEU=;IJ-, (6)
u .
s. 1. D% g p=l..n, 6.1)
Vpo
uy.
il j=l..n, p=L..n, (6.2)
VPXJ
u*y- .
0, =——", j=1,..,n, p=L..,n, (6.3)
VpXj
1L .
0,==—>0,,  j=lL..n, (6.4)
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<M(1-1), j=1,..,n,j#o0,

b8 6.5
. 6.5)

,V; >0,, p=L..n,1 e {0,1}, j=L..,n,j#o0,

where 6; is the efficiency score of DMUp provided by Mode/ (2). T, j # o are binary variables that, at optimum,

state DMUj outperforms DMU, or not. Also, M is a sufficient large positive number. In Mode/ (6), we aim to
minimize the number of better DMUs. In the optimal solution of Mode/ (6), 1, =0 indicates that DMU; is

better than DMU;, if and only if ]_Ej >E, , while ]_Ej <E, is necessarily associated with [ =1.

Therefore, Mode/ (6) computes the maximum number of units whose cross-efficiency scores are lower than
ot equal to DMU;, (excluding DMUj,). Thus, the best ranking of DMU, can be easily obtained using Eg. (5).
Alcaraz et al. [1] proposed a model similar to Mode/ (6) to determine the worst ranking of DMU,,. In this vein,
the following Constraint (7) is put instead of Constraint (6.5) in Model (6).

6, -6, <M1-1)), j=L..n, j#o. 7
Therefore, the worst ranking of the DMU, is obtained by:
¥ =BE, +1, ®)

where BE, is the optimal solution of Mode/ (6), while Constraint (7) is located instead of Constraint (6.5) in Model

(6). One of the weaknesses of both models proposed by Alcaraz et al. [1] is their non-linearity; that is, they
are Mixed-Integer Linear Programs (MILPs) built upon the set of feasible cross-efficiency weights derived
from the DEA models. To solve this problem, we propose a new method for converting non-linear models
[1] into LP models.

3| Proposed Method

The problems with the methods suggested by Alcaraz et al. [1] are the nonlinearity and the integer
programming. To deal with these problems, we use goal programming to convert the MILP model into an
LP model. In this article, for the first time, a Goal-programming problem is proposed to determine the
optimal ranking of the DMU under evaluation, which is applied instead of Mode/ (6).

Now, we propose Model (9) based on goal programming to find the best rank for DMU...

min WEO:ZI:dJ.*, ©)
-

u* «

st =2 g p=1..n, 9.1)
VPXP

uv.

oYl o, i=L..n, p=l..n, 9.2)

VPXj
uv.

0, = ny j=L...,n, p=L..n 9.3)
VPXJ

R

ej=HZem j=L..,n, v4)

6,-6,+d; —d; =0, j=l..n,j*o,
* * (9'5)
u, >0,v, 20,,d;20,d >0, p=1..n,j=1..n,
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where WE; is the maximum number of units whose cross-efficiency scores in the above-mentioned goal-
programming problem are lower than or equal to DMU,. Also, 9; is the efficiency score of DMUp attained
by Model/ (2). The objective function of Mode/ (9) minimizes unfavorable deviation. In Mode/ (9), if d; >0 and
d; =0 then 6J. <@, , it satisfies that DMU; performs worse than DMU, under evaluation.

After solving Mode/ (9), the worst ranking of the DMU under assessment can be computed by Relation (8).

Now, the goal-programming Mode/ (10) is expressed as follows, which is suggested to find the worst ranking
of DMU..

min BE, =) d], (10)
=l
u .
st 2o g p=1...n, (10.1)
V. X
p™p
uy.
oY 1, i=L..n, p=1l..n, (10.2)
VpXj
u*y- .
0, =——, j=1..,n, p=L..n, (10.3)
\% Xj
_ 1l -
ej_ﬁ 0, J=1..,n, (10.4)

6,-6,+d;—d; =0, j=L..n,j=o,
(10.5)

* * — + .
u, 20, v, 20, d; 20,d; >0, p=1..n,j=1..n,
where BE; is the maximum number of units whose efficiency scores in the above-mentioned goal-

programming are higher than or equal to DMU,. This problem is the same as Mode/ (9), but in the objective

function of Mode/ (10), we have )" d; instead of > d: . Finding the maximum number of units whose cross-
= =1

efficiency is higher than or equal to DMUo is the aim of Mode/ (10). In Mode/ (10), if d; =0 and d] >0 then

}_Ej > }_E0 , it means that DMUj performs better than DMU,. Therefore, the worst ranking of DMU, is attained

by solving Mode/ (10) and Relation (5).

4| Numerical Example

The above-mentioned goal-programming problem is applied to the data mentioned in the study, in which six
nursing homes are evaluated with two inputs and two outputs.

Now, we apply the proposed models to numerical examples from Alcaraz et al. [1] and compare the results
with previous ones. Consider the example of Alcaraz et al. [1] where six nursing homes are evaluated with
two inputs (X; and X) and two outputs (Y1 and Y2). Table 1 shows the data along with the efficiency scores
obtained from the CCR model (Mode/ (2)).

Table 1. Data example [1].

DMU X1 X2 Y1 Yz DEA Score
1.5 02 14 035 1

4 0.7 14 21 1

32 12 42 105 1

52 2 2.8 4.2 1

35 12 19 25 09775

32 0.7 14 15 0.8674

AU AN
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Obviously, four DMUSs out of six are CCR-efficient with a score of 1. DMUs and DMUj are inefficient.

Table 2 reports the ranking ranges for each unit, obtained by solving Model (6) and Constraints (5) and (8), as
proposed by [1]. Results are reported in Table 2.

Table 2. Ranking ranges of six DMUs [1].

DMU Best Ranking (Model (6)) Worse Ranking (Model (7))
1 6

[ N N R R
AN Ul A~ O

1
1
1
2
4

Now, we consider DMUs to determine its worst and best ranks. To achieve this goal, Mode/s (9) and (70) are
solved. Table 3 presents the deviation value from DMUs by utilizing Mode/ (10) and Relation (8).

Table 3. Worst ranking of DMUs; via solving Model (10).

d, d, d; d; d; dr d; dy dy dg

0 0 0 0.001536214  0.02305003  0.2750802  0.1062967 0 0 0

Similarly, by considering Mode/ (9) and Relation (5), the best ranking of DMUs is determined. Table 4 represents
the deviation amount of DMUs, by considering the result of Table 3 df* =d; = d;* =0 . Therefore, the amount

of the objective function Mode/ (10), i.e., Z d; will be equal to three. The worst rank of DMUs by considering

j=1

Phrase (8) is obtained as follows:
n'=BE, =) d] +1=3+1=4.
=
The worst rank for DMUs among the six DMUs is 4. Similarly, regarding Mode/ (9) and the result of Table 4,

we have d/” =d}" =d;" =d;" =0 then the value of the objective function Model (10), i.e, Y_d} is equal to four.

j=1

Finally, the best rank for DMUs upon Relation (5) is obtained as follows:
' =n-WE =6-4=2.

The best rank for DMUs among the six NITs is 2. Finally, applying the same procedure to the other DMUs,
ranking ranges are computed, as shown in Table 5.

Table5. Ranking ranges of all DMUs by using the proposed method.

DMU Best Ranking Worse Ranking
6
6
6

[ R N N
U1 N = = =
N B~

From Table 5, we see that each unit can almost accept every ranking when evaluated using cross-efficiency.
DMU; and DMUj3 can be ranked first or last according to the DEA weights. DMUgis the worst performer,
since it always accepts the lowest rankings.
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5| Conclusion

DEA combined with cross-efficiency evaluation enables a more precise assessment of performance and a fair
ranking of DMUs. The cross-efficiency method addresses the limitations of traditional DEA by introducing
peet-assessment perspectives, yielding more consistent and discriminating outcomes. In the cross-efficiency
evaluation approach within DEA, each DMU is first assessed using its own optimal input-output weights,
and then re-evaluated using the weights of other DMUs.

Ranking DMUs is a significant issue for organizations. Many studies have applied the DEA method to rank
units. However, because DEA model weights are not unique, it is sometimes not possible to assign a unique
rank to each unit. To address this problem, some models have been developed based on DEA and cross-
efficiency evaluation. In this context, Alcaraz et al. [1] introduced a new concept, called ranking ranges, which
was achieved by solving two non-LP problems. In this paper, building on their idea and using the goal
programming method, two LP problems are proposed that do not suffer from the issues associated with
integer programming and provide a procedure to obtain the worst- and best-ranked rankings for each DMU.
The advantage of our proposed method compared to other methods is its linearity. This makes the problem

easier to solve and reduces system and time costs.
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