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1|Introduction    

In recent years, there has been a wide range of Data Envelopment Analysis (DEA) applications for evaluating 

the performance of entities engaged in diverse activities, contexts, and countries. DEA is a non-parametric 

method based on Linear Programming (LP) to determine efficient and inefficient Decision-Making Units 

(DMUs) and compare their efficiencies. Performance evaluation is typically expressed as a ratio, such as 

output/input. This is commonly referred to as an efficiency measure, which is less than or equal to 1. 

Measuring total performance, especially when there are multiple inputs and outputs, presents challenges such 

as selecting appropriate weights for the inputs and outputs to calculate the output/input ratio for efficiency 

measurement [2]. These weights are chosen so that each is evaluated under the most favorable conditions. 
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of Decision-Making Units (DMUs). The cross-efficiency method has been introduced as an extension of DEA, 
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The DEA model was first proposed by Charnes et al. [2] to obtain efficiency scores for DMUs (the CCR 

model) and to identify efficient and inefficient units. Subsequently, Banker et al.[3] introduced the BCC model, 

and others have since extended it. Another important topic for managers is ranking DMUs by performance. 

Many studies have been conducted in this area; for example, Andersen and Petersen [4] proposed a ranking 

method. They removed the DMU under evaluation from the Production Possibility Set (PPS) and applied the 

model to the remaining DMUs. However, this approach is infeasible and unstable for specific data sets. 

Mehrabian et al. [5] later suggested an LP model, known as the MAJ model, for ranking efficient units in the 

presence of zero data. However, the MAJ model fails in some cases, as demonstrated by a theorem in [5]. In 

the MAJ model, unlike the AP model, movement towards the frontier was performed along the input axis 

with input orientation and equal steps. This approach removed the instability problem but caused infeasibility 

in some data sets. To address this weakness, Saati et al. [6] modified the MAJ model and proved that this 

version is always feasible and simultaneously both input- and output-oriented. Jahanshahloo et al. [7] 

proposed a ranking method using super-efficiency and the L1-norm. Jahanshahloo et al. [7] proposed a 

method for ranking efficient units. Khodabakhshi and Aryavash [8] proposed a ranking method in which the 

maximum and minimum efficiency scores for each unit are first computed under the assumption that all units 

have equal efficiency scores of 1. Then, by combining the maximum and minimum efficiency scores, the 

ranking is determined. Jahanshahloo et al. [9] proposed two new models to rank efficient units based on the 

L1-norm and input-output weights. 

Ziari and Raissi [10] introduced a new method to rank extremely efficient DMUs in DEA by minimizing the 

distance between the virtual DMU and the DMU under evaluation. Ziari [11] introduced another method 

that transformed the non-LP model proposed by Jahanshahloo et al. [12] into an LP model to rank 

DMUs.Banhidi and Dobos [13] applied a common-weight DEA model to rank Central and Eastern European 

countries based on digital readiness indicators. Chen [14] proposes an extended version of super-efficiency 

DEA to achieve a complete and stable ranking among DMUs. 

Cross-efficiency evaluation is an advanced extension of DEA designed to enhance the discrimination and 

ranking of DMUs. Unlike traditional DEA models, which allow each DMU to choose its own optimal 

weights, the cross-efficiency method introduces a peer-evaluation process in which each unit is also assessed 

using the weights of others. Therefore, the relative efficiency for each DMU is obtained by averaging all 

attained efficiencies, allowing DMUs to be ranked. This approach provides more reliable and fair efficiency 

scores by considering both self- and peer-assessments. Cross-efficiency evaluation has been used in various 

contexts, and some applications of this methodology can be found in research by Sexton et al. [15], who 

proposed a cross-efficiency method in which, using DEA, the optimal weights for the multiplier model were 

computed. Other studies concerning ranking methods in DEA include those by [12], [16-18]. 

Liu et al. [19] extended cross-efficiency evaluation to a two-stage DEA framework incorporating dual fairness 

constraints, providing a comprehensive and equitable efficiency analysis for multi-process decision-making 

systems. Kumar and Al-Hassan [20] applied cross-efficiency DEA and bootstrapped regression to measure 

how mobile e-learning influences school management efficiency. Orkcu [21] developed goal-programming 

models for use in the second stage of cross-efficiency evaluation in DEA to reduce weight multiplicity and 

improve discrimination power. Davtalab [22] introduced a novel secondary objective for cross-efficiency 

evaluation that maximizes the number of DMUs that reach their target efficiency. 

The main problem in evaluating cross-efficiency is the possibility of multiple optimal DEA weightings, which 

may yield different rankings of DMUs. To address this issue, the use of secondary goals to determine weights 

was suggested. Sexton et al. [15] and Doyle and Green [23] proposed aggressive and benevolent formulations. 

These are examples of models that use an additional criterion to select weights. Extensions of these models 

are found in studies conducted by [24] and [17], [18]. Alcaraz et al. [1] proposed a method to determine the 

ranking range of DMUs within the cross-efficiency evaluation framework. They calculated the maximum and 

minimum cross-efficiency scores for each unit, and their results are more stable than those of traditional DEA 

models. In this article, the weights are determined through LP, as in traditional DEA models. However, 
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instead of using a single set of optimal weights, the authors compute the maximum and minimum cross-

efficiency scores for each unit by considering all feasible weight combinations. This approach treats weights 

as ranges rather than fixed values; therefore, a single rank for each unit cannot be achieved. The rank of each 

DMU is determined by the best and worst rankings that the unit could attain. One drawback of their proposed 

models is their non-linearity. In this article, we utilize the goal-programming method and convert the models 

proposed by Alcaraz et al. [1] into linear models. The advantage of our models is their ease of solution due 

to linearity, and the worst and best rankings for each unit are obtained using the same models. 

The rest of the paper is organized as follows. Section 2 explains not only the computation of the cross-

efficiency scores for each DMU but also illustrates the method introduced by Alcaraz et al. [1] for obtaining 

ranking ranges. Section 3 demonstrates the goal-programming procedure for computing ranking ranges. 

Section 4 presents the numerical example, and Section 5 provides the conclusion. 

 2|Preliminaries 

2.1|Data Envelopment Analysis Models 

Consider a set of peers observed DMUs (DMUj, j 1,...,n= ) such that each DMUj produces multiple non-

negative outputs y (r 1,...,s)
rj

=  utilizing multiple non-negative inputs x (i 1,...,m)
ij

= . It is supposed that 

T

j 1j mj mx (x ,..., x ) 0=  and T

j 1j sj s(y ,..., y )= y 0 for each j. Moreover, assume that T

j j jD ( , )= x y  expresses the 

input and output vectors of each DMUj,  j J 1,...,n = . It is assumed that there is no duplicate DMU. The 

PPS is defined as the set of all possible input-output vectors as follows: 

The following problem computes the efficiency of DMUP: 

where 
p 1p mpv (v ,..., v )= , 

p 1p spu (u ,...,u )=  are input and output weights, respectively. Using the method of 

converting linear fractional programming into LP suggested by [7], the above-mentioned Model (1) transforms 

into the following LP Model (2), which is named CCR proposed by [2]: 

Definition 1. DMUo= o o(x , y ) is a CCR-efficient unit if and only if the optimal objective function of Model 

(2) is equal to one; otherwise, it is inefficient. 

PPS =  {(x, y): x can produce by y}.  
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2.2|Cross-Efficiency 

Based on the optimal solutions of Model (2), the cross-efficiency evaluation of each DMU can be obtained. If 
* * * * * *

p p 1p mp 1p sp(v ,u ) (v ,..., v ,u ,...,u )=  is an optimal solution of Model (2) for a given DMUp, then the cross-efficiency 

of DMUj , j=1,…,n obtained with the weights of DMUp is the following: 

Then, the cross-efficiency score of DMUj , j=1,…,n  is usually defined as the average of the weights of all 

DMUs. It means the cross-efficiency score of DMUj is determined as: 

It is noticed that DEA models may have multiple optimal solutions. This non-uniqueness of input/output 

optimal weights would undermine the cross-efficiency concept, as it creates ambiguity in the use of weights 

for the computation of final results. In addition, this same problem (multiple optimal weights) sometimes 

causes a DMU not to have a unit rating. 

2.3|Cross-Efficiency and Ranking 

In classical DEA and cross-efficiency evaluation, each DMU selects input and output weights to maximize 

its own efficiency. Sometimes, multiple optimal weights can exist, leading to unstable rankings depending on 

the chosen weight. To cope with this problem, Alcaraz et al. [1] proposed a method that, instead of assigning 

a single rank to each DMU, calculates a range of possible ranks showing the best and worst positions a DMU 

can occupy under all possible optimal weight selections. They defined the best and worst ranks for each unit 

as follows: the Best (Worst) rank is the least significant (most significant) achievable across all feasible optimal 

weight sets. To achieve the best and worst ranks, they suggested separate integer models.  

The best ranking of a DMUo (DMU under evaluation) is obtained with Eq. (5), which is mentioned below: 

where *

oWE  is the optimal solution of the Model (6) expressed as: 

s

*

rp rj

r 1
pj m

*

ip ij

i 1

u y

θ , j 1,...,n.

v x

=

=

= =




 (3) 

n

pj

p 1

j

θ
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n

=
= =


 

(4) 

b *

o or n WE ,= −  (5) 

o j

j o

max WE I ,


=  
(6) 

*

p p *

p*

p p

u y
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= =  (6.1) 

*

p j
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where *

pθ  is the efficiency score of DMUP provided by Model (2). 
jI , j o are binary variables that, at optimum, 

state DMUj outperforms DMUo or not. Also, M is a sufficient large positive number. In Model (6), we aim to 

minimize the number of better DMUs. In the optimal solution of Model (6), 
jI 0=  indicates that DMUj is 

better than DMUp if and only if 
j oE E  , while 

j oE E  is necessarily associated with 
jI 1= .  

Therefore, Model (6) computes the maximum number of units whose cross-efficiency scores are lower than 

or equal to DMUp (excluding DMUp). Thus, the best ranking of DMUp can be easily obtained using Eq. (5). 

Alcaraz et al. [1] proposed a model similar to Model (6) to determine the worst ranking of DMUo. In this vein, 

the following Constraint (7) is put instead of Constraint (6.5) in Model (6). 

Therefore, the worst ranking of the DMUo is obtained by: 

where *

oBE  is the optimal solution of Model (6), while Constraint (7) is located instead of Constraint (6.5) in Model 

(6). One of the weaknesses of both models proposed by Alcaraz et al. [1] is their non-linearity; that is, they 

are Mixed-Integer Linear Programs (MILPs) built upon the set of feasible cross-efficiency weights derived 

from the DEA models. To solve this problem, we propose a new method for converting non-linear models 

[1] into LP models. 

3|Proposed Method 

The problems with the methods suggested by Alcaraz et al. [1] are the nonlinearity and the integer 

programming. To deal with these problems, we use goal programming to convert the MILP model into an 

LP model. In this article, for the first time, a Goal-programming problem is proposed to determine the 

optimal ranking of the DMU under evaluation, which is applied instead of Model (6). 

Now, we propose Model (9) based on goal programming to find the best rank for DMUo.  

 

j o j

* *
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where *

pWE  is the maximum number of units whose cross-efficiency scores in the above-mentioned goal-

programming problem are lower than or equal to DMUo. Also, *

pθ  is the efficiency score of DMUp attained 

by Model (2). The objective function of Model (9) minimizes unfavorable deviation. In Model (9), if 
jd 0−   and 

jd 0+ =  then 
j oθ θ  , it satisfies that DMUj performs worse than DMUo under evaluation.  

After solving Model (9), the worst ranking of the DMU under assessment can be computed by Relation (8). 

Now, the goal-programming Model (10) is expressed as follows, which is suggested to find the worst ranking 

of DMUo. 

where *

pBE  is the maximum number of units whose efficiency scores in the above-mentioned goal-

programming are higher than or equal to DMUo. This problem is the same as Model (9), but in the objective 

function of Model (10), we have 
n

j

j 1

d−

=

 instead of
n

j

j 1

d+

=

 . Finding the maximum number of units whose cross-

efficiency is higher than or equal to DMUo is the aim of Model (10). In Model (10), if 
jd 0− =  and 

jd 0+   then 

j oE E  , it means that DMUj performs better than DMUo. Therefore, the worst ranking of DMUo is attained 

by solving Model (10) and Relation (5). 

4|Numerical Example 

The above-mentioned goal-programming problem is applied to the data mentioned in the study, in which six 

nursing homes are evaluated with two inputs and two outputs.  

Now, we apply the proposed models to numerical examples from Alcaraz et al. [1] and compare the results 

with previous ones. Consider the example of Alcaraz et al. [1] where six nursing homes are evaluated with 

two inputs (X1 and X2) and two outputs (Y1 and Y2). Table 1 shows the data along with the efficiency scores 

obtained from the CCR model (Model (2)). 

Table 1. Data example [1]. 
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u 0 ,  v 0 ,   d 0,d 0, p 1,...,n, j 1,...,n,
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 (10.5) 

DMU X1 X2 Y1 Y2 DEA Score 

1 1.5 0.2 1.4 0.35 1 
2 4 0.7 1.4 2.1 1 
3 3.2 1.2 4.2 1.05 1 
4 5.2 2 2.8 4.2 1 
5 3.5 1.2 1.9 2.5 0.9775 
6 3.2 0.7 1.4 1.5 0.8674 
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Obviously, four DMUs out of six are CCR-efficient with a score of 1. DMU5 and DMU6 are inefficient.  

Table 2 reports the ranking ranges for each unit, obtained by solving Model (6) and Constraints (5) and (8), as 

proposed by [1]. Results are reported in Table 2. 

Table 2. Ranking ranges of six DMUs [1]. 

 

 

 

 

 

Now, we consider DMU5 to determine its worst and best ranks. To achieve this goal, Models (9) and (10) are 

solved. Table 3 presents the deviation value from DMU5 by utilizing Model (10) and Relation (8).  

Table 3. Worst ranking of DMU5 via solving Model (10). 

 

 

 

Similarly, by considering Model (9) and Relation (5), the best ranking of DMU5 is determined. Table 4 represents 

the deviation amount of DMU5, by considering the result of Table 3 * * *

1 2 2d d d 0− − −= = = . Therefore, the amount 

of the objective function Model (10), i.e., 
n

j

j 1

d−

=

  will be equal to three. The worst rank of DMU5 by considering 

Phrase (8) is obtained as follows: 

The worst rank for DMU5 among the six DMUs is 4. Similarly, regarding Model (9) and the result of Table 4, 

we have * * * *

1 2 3 6d d d d 0+ + + += = = =  then the value of the objective function Model (10), i.e, 
n

j

j 1

d+

=

 is equal to four. 

Finally, the best rank for DMU5 upon Relation (5) is obtained as follows: 

The best rank for DMU5 among the six NITs is 2. Finally, applying the same procedure to the other DMUs, 

ranking ranges are computed, as shown in Table 5. 

Table5. Ranking ranges of all DMUs by using the proposed method. 

 

 

 

  

 

From Table 5, we see that each unit can almost accept every ranking when evaluated using cross-efficiency. 

DMU1 and DMU3 can be ranked first or last according to the DEA weights. DMU6 is the worst performer, 

since it always accepts the lowest rankings. 

DMU Best Ranking (Model (6)) Worse Ranking (Model (7)) 

1 1 6 
2 1 5 
3 1 6 
4 1 4 
5 2 5 
6 4 6 

6
d
+

 4
d
+

 3
d
+

 2
d
+

 1
d
+   

6
d
−  

4
d
−  

3
d
−  

2
d
−  

1
d
−   

0 0 0 0.1062967 0.2750802 0.02305003 0.001536214 0 0 0 

n

w * *

5 o j

j 1

r BE d 1 3 1 4.−

=

= = + = + =   

b *

5 or n WE 6 4 2.= − = − =   

DMU Best Ranking Worse Ranking 

1 1 6 
2 1 6 
3 1 6 
4 1 6 
5 2 4 
6 5 6 
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5|Conclusion 

DEA combined with cross-efficiency evaluation enables a more precise assessment of performance and a fair 

ranking of DMUs. The cross-efficiency method addresses the limitations of traditional DEA by introducing 

peer-assessment perspectives, yielding more consistent and discriminating outcomes. In the cross-efficiency 

evaluation approach within DEA, each DMU is first assessed using its own optimal input-output weights, 

and then re-evaluated using the weights of other DMUs. 

Ranking DMUs is a significant issue for organizations. Many studies have applied the DEA method to rank 

units. However, because DEA model weights are not unique, it is sometimes not possible to assign a unique 

rank to each unit. To address this problem, some models have been developed based on DEA and cross-

efficiency evaluation. In this context, Alcaraz et al. [1] introduced a new concept, called ranking ranges, which 

was achieved by solving two non-LP problems. In this paper, building on their idea and using the goal 

programming method, two LP problems are proposed that do not suffer from the issues associated with 

integer programming and provide a procedure to obtain the worst- and best-ranked rankings for each DMU. 

The advantage of our proposed method compared to other methods is its linearity. This makes the problem 

easier to solve and reduces system and time costs. 
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