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1|Introduction    

In the financial world, investors and financial managers are always looking for ways to increase returns and 

minimize risks in their investment portfolios, so that portfolio evaluation can be necessary. One of the 

standard methods in this field is portfolio optimization, which determines the optimal allocation of a limited 

combination of assets for investment using various models to achieve high return and less uncertainty (risk). 
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Abstract 

Portfolio optimization problems include the selection of different assets to invest in order to maximize the return 

and minimize the risk. In practice, the models account for asset returns that skewness, Kurtosis, and heavy tails 

characterize. For this purpose, we describe the dynamics of assets’ returns with the Variance Gamma (VG) process 

from Lévy processes by considering the skewness and Kurtosis of the assets' return rate. We employ Data 

Envelopment Analysis (DEA) methodology alongside Directional Distance Function (DDF), which they able to 

evaluate different assets' performance by VG process through its constraints, and they identify inefficiencies within 

asset markets. We introduce two models that seek to simultaneously minimize the risk measure as the input and 

maximize the mean return as the output of the given asset using the pre-specified direction vector. In the first model, 

stricter assessments arise from directions emphasizing maximum conditional risk and return. In the second model, 

mean return-risk values remain constant, suggesting that asset inefficiency is unaffected by changing directions. This 

unchanging pattern may reflect similar impacts across scenarios or limitations in the mean return-risk metric’s ability 

to detect directional variations. Instead, asset inefficiency appears to be driven by intrinsic distributional properties, 

notably skewness and Kurtosis, rather than scenario-specific influences. An empirical example in the Iranian stock 

market of seven companies is used to validate the models.  
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  Markowitz pioneered in the study of portfolio selection and mean-variance analysis [1], [2]. Data 

Envelopment Analysis (DEA) has been widely used as a non-parametric method for evaluating the efficiency 

of Decision-Making Units (DMUs) in various fields, including finance, healthcare, education, and 

manufacturing. Since its introduction [3], DEA has evolved into a powerful tool for assessing performance 

based on multiple inputs and outputs. 

This non-parametric efficiency method has gained attention as a powerful tool for evaluating financial 

performance and investment efficiency [4]. This method allows for the comparison of different mutual funds 

and helps investors identify efficient assets. DEA has been applied in financial markets to evaluate the 

efficiency of investment portfolios. Researchers have explored how DEA can be used to preselect efficient 

assets, optimize portfolio allocation, and assess risk-adjusted returns. Studies have demonstrated that DEA-

based portfolio selection can outperform traditional methods such as mean-variance optimization [5], [4]. 

Also, some approaches have presented a DEA-like structure in a mean-variance-skewness framework [6–8].   

However, a significant challenge in using DEA is the lack of directionality in optimization in some classical 

models. To address this limitation, the Directional Distance Function (DDF) has been introduced as an 

advanced approach in DEA. This function enables investors to incorporate their preferences in portfolio 

optimization, allowing them to optimize based on specific directions rather than traditional models. DDF has 

been introduced for simultaneous input reduction and output expansion [9]. To estimate the value-based 

technical inefficiency, an approach has been proposed using the concept of DDF, which is generalized 

Shephard’s distance function     [10–12]. New cost, revenue, and profit-based measures of efficiency have been 

developed with respect to the DDF. These measures satisfy the property of translation invariance. Also, they 

can handle negative data by selecting the suitable direction vectors [13]. A non-radial DDF model that 

accommodates negative and flexible measures in DEA has been proposed, relaxing assumptions of non-

negative data and fixed input-output roles. This study is crucial for extending DDF applications to scenarios 

with non-standard data structures [14]. A two-step methodology combining DEA with DDFs has been 

introduced to select efficient assets and interval multi-objective programming to optimize portfolio 

composition. This approach is valuable for its integration of DEA efficiency analysis with investor preferences 

in portfolio construction. 

Risk in financial assets is a factor that influences the asset prices. Because of the tail and skewness in the 

distribution of asset returns, variance as a risk measure in Markowitz's theory is widely criticized by 

practitioners due to its symmetrical measure. Moreover, investors prefer a positive skewed distribution, i.e., a 

large chance of small loss [15]. Value-at-Risk (VaR) is another risk measure that is popular as an industry 

standard, but it is not always sub-additive nor convex. So, the concept of coherent risk measure is introduced 

that satisfies the properties of translation invariance, homogeneity, subadditivity, and monotonicity [16]. 

Conditional Value-at-Risk (CVaR) as an alternative and compatible risk measure is the weighted average of 

VaR and losses strictly greater than VaR for general distributions [17]. The method of CVaR minimization 

has been employed for credit risk management of a portfolio of bonds [18], and it has been applied in portfolio 

hedging [19], see also [20].  

In the realm of dynamic portfolio selection, risky assets are commonly modeled using Brownian Motion with 

a normal distribution. However, empirical evidence often reveals that asset return distributions deviate from 

normality, exhibiting greater leptokurtosis and thicker tails than a normal distribution would suggest. To 

address these characteristics in portfolio optimization, the Variance Gamma (VG) process is employed, which 

accounts for leptokurtosis and skewness through its parameters [7], [21]. The VG process, characterized as a 

Brownian Motion with drift adjusted by a stochastic time change and Gamma-distributed variance, features 

independent and stationary increments starting from zero, making it suitable for modeling log asset prices 

and capturing models with infinite jumps within finite time intervals. Neglecting extreme events, such as 

asymmetric tail dependence, during portfolio construction may limit asset managers’ ability to mitigate risk 

through diversification. Consequently, incorporating tail dependence into the covariance matrix has been 

proposed to enhance portfolio performance [22]. 
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  Furthermore, a hybrid accelerated simulation approach was developed for pricing Asian options with 

arithmetic average payoffs under the VG process, utilizing a decomposition of the payoff and importance 

sampling to reduce simulation variance [23]. Two optimization problems have been introduced, which they 

have integrated with the DEA based on the VG Lévy process, in which the input and output are stochastic. 

These models have assumed that the asset return follows a pure jump Lévy process [24]. 

In this paper, we aim to explore the connection between portfolio optimization and DEA and demonstrate 

how the DDF can enhance investment decision-making. Additionally, we will present mathematical models 

for evaluating asset efficiency performance under the VG process, helping investors make better decisions 

under  price uncertainty. Risk is quantified as the only input with mean return as the output, to assess asset 

performance. VaR and CVaR are utilized to enhance risk measurement. This contribution has argued for 

formulating DEA models based on DDF that improve the efficiency of asset performance evaluation. 

In financial modeling, minimizing risk while maximizing mean return constitutes a fundamental principle. 

Skewness and Kurtosis significantly influence risk (As an input) and mean return (As an output) of an asset, 

serving as critical metrics for assessing asset performance. These measures enhance the ability to evaluate the 

probability of extreme events in the tails of return distributions. To address these characteristics, the VG 

process is adopted, incorporating constraints on both inputs and outputs. The VG process offers several 

advantages, including its capacity to model heavy-tailed distributions, finite moments of all orders for reliable 

parameter estimation, and the ability to adjust skewness and Kurtosis through its parameters, thereby 

improving the accuracy of asset performance evaluations. In other words, the VG provides a better fit than 

usual for daily log-returns distributions. Therefore, we develop models employing a directional measure to 

simultaneously reduce risk and enhance mean return, assessing asset performance within a mean return-risk 

framework using the VG process. Three different direction vectors are considered to take the range of 

possible improvement in the input and/or output of the asset under evaluation [13]. By applying each pre-

specified direction vector, the first model maximizes different proportional changes in the risk measure 

reduction and the augmentation in mean return. Any risk measure can utilize this model, and we use VaR and 

CVaR as the risk measures in the applied example. The second model in the mean return-CVaR framework 

uses former directions. In this model, the risk measure CVaR is applied in the form introduced in [25]. In 

both models, the efficiency of the asset under evaluation is characterized by its projection point and its 

distance from the efficient frontier. These models identify the extent to which risk must be reduced and 

returns increased to position an inefficient portfolio on the efficient frontier. In analyzing real data, the 

parameters of the VG process are first estimated using the method of moments. Subsequently, a Monte Carlo 

simulation is employed to generate VG process factors. The VG process is a better fit compared to the normal 

distribution. Additionally, by accounting for skewness and Kurtosis in asset performance evaluation, the VG 

process eliminates the need for supplementary constraints in the models. To validate the practicality of the 

proposed models, we apply seven companies of the Iran Stock Exchange Market from 2018 to 2019 [24].     

The rest of the paper is organized as follows. In Section 2, we propose our VG-based models with DDFs in 

the mean return-risk framework. And the empirical example of the Iranian stock Exchange Market is provided 

in Section 3. In the conclusion section, we discuss our findings. 

2|Portfolio Directional Distance Function Models  

In considerable empirical studies, asset returns distributions are non-normal, and they are more leptokurtic 

and exhibit skewness. In this section, we propose models based on a directional measure, which seek to 

simultaneously minimize the risk measure and maximize the mean return, evaluating an asset's performance 

in a mean return-risk framework under the VG process. As mentioned, skewness and Kurtosis are controlled 

by VG parameters in assessing. Therefore, this has an impact on the performance evaluation, directly, and it 

leads to more reliable efficiency scores. Our proposed models are based on the directional profit maximization 

problem [13]. It should be mentioned that the models proposed here are introduced in [24]. We suggest calling 
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  the models the Portfolio Directional Distance Function (PDDF). The input of the models is the risk measure, 

and the mean return is considered the output. 

Let's suppose there are n financial assets. Return of each asset is defined as 1 1 nY ,Y ,...,Y . We consider 

o o o TY (Risk ,E(Y ))=  as the asset under evaluation for o 1,2,...,n , oRisk  is the risk measure, and oE(Y )  is the 

mean return of  oY . Let o o

T

Risk E(Y )
g (g ,g )=  be a direction vector, Risk as the risk measure and mean return, 

and for the asset under evaluation.  

Now, we assume that the VG process describes the dynamics of assets’ log returns. For this purpose,  let 

 k

tX , t 0  for k 1,2,...,n=  be the independent multiple VG factors k

t k k kX ~ VG(t;σ ,θ , ν ),  where 
kσ , 

kθ , 
kν  

are the parameters of the VG process. Also, we assume that j

tS  be the j -th asset’s price process satisfies in 

We build a portfolio with n financial assets 1 2 nS ,S ,...,S and the return of the j asset, i.e., j j j

t t 0Y LnS LnS= −

(t 0) follows: 

Hereafter, for convenience, we use jY  instead of j

tY . The following models measure the distance between 

the asset under evaluation and the efficient frontier. The input and the output of the model, the risk measure, 

and the mean return are estimated by VG parameters. We take three different direction vectors, consider 

taking the range of possible improvement in input and/or output as follows:  

For each pre-specified direction vector g , we now present below the DDF-based DEA models in a portfolio 

framework under the VG process as the PDDF model. 

Model (6) is in the mean return-Risk framework that is the same as the BCC model in DEA, but it is under 

the VG process. The proportions of initial capital are shown by vector T

1 2 nλ (λ ,λ ,...,λ )= in which the invested 

n

j j j k

t 0 jk t

k 1

S S exp(μ t a X ).
=

= +  (1) 

n

j j k

t jk t

k 1

Y μ t a X .
=

= +  (2) 

 

(3) 

 

(4) 

 

(5) 

o o

o

o

*

PDDF1 Risk E(Y )

o

Risk

n

o j j k

jkE(Y )
k 1

T k

k k k

ρ = max g α g α ,

s.t. Risk(Y(λ)) Risk g α ,

E(Y(λ)) E(y ) g α , Y μ a X , j 1,2,...,n

e λ 1, λ 0, α 0,α 0, X ~ VG(t;σ , ν ,θ ). k 1,2,...,n.

− +

−

+

=

− +

+

 −

 + = + =

=    =


 (6) 

 

( )  ( )

o

o

o j

Risk j 1,2,...,n

j o

E(Y ) j 1,2,...,n

g Risk min Risk ,

g max E Y E Y .

=

=

= −

= −

 

( ) 

o

o

j

Risk j 1,2,...,n

j

E(Y ) j 1,2,...,n

g max Risk ,

g max E Y .

=

=

=

=

   

( )  ( ) 

o

o

j j

Risk j 1,2,...,nj 1,2,...,n

j j

E(Y ) j 1,2,...,nj 1,2,...,n

g max Risk min Risk ,

g max E Y min E Y .

==

==

= −
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money in the asset j  is jλ . It is defined as a decision vector in Model (6) and e is the all-ones vector. The 

return of a portfolio is defined by 
n

j

j

j 1

Y(λ) λ Y
=

= and the mean return of the portfolio is computed as 

To solve the optimization problem, first of all, we compute jY for j 1,2,...,n= , through VG parameters and 

the Monte Carlo simulation technique, then we solve Model (6). It should be noted that jY is the sample return 

of jth asset. First, we estimate the parameters of VG, the estimation method we employ is the Moment 

Estimation [21]. Then, the non-linear equations based on the first four central moments and covariance of 

returns distribution over the length of the given time t are obtained, they are solved by the Gauss-Newton 

algorithm, and the VG parameters are estimated. We apply the technique that is employed in [20]. Next, we 

simulate the VG factors 1 2 nX ,X ,...,X using the Monte Carlo method. Lastly j 1,2,...,n= , scenarios of financial 

assets log return are computed according to Eq. (2). The advantage of the Model (6) is that skewness and 

Kurtosis of the return distributions are considered into efficiency performance through VG parameters. 

Furthermore, the mean return and risk measure are affected by the VG process. The optimal value of *

PDDF1ρ

seeks simultaneously to reduce the risk measure and improve the mean return of the asset under evaluation 

in the direction of vector g . In other words, for a given asset, the optimal objective value of the model 

indicates different maximum proportional changes in Risk and mean return of the asset, and the purpose is 

to maximize 
PDDF1ρ  in direction o o

T

Risk E(Y )
g (g ,g )= for the risk measure and mean return, separately for the 

asset under evaluation. Essentially, *

PDDF1ρ in Model (6) is a measure of the distance between the under-

evaluation asset and the efficient frontier. In the direction of vector o o

T

Risk E(Y )
g (g ,g ) ,=  the evaluated asset’s 

projection coordinates are determined by the right-hand sides of the inequality constraints of Model (6) 

evaluated in the optimal solution (i.e., o o

o o T

Risk E(Y )
(Risk α g ,E(Y ) α g )− +− + ). In an empirical example, the CVaR 

and VaR are applied as risk measures in Model (6). So, other risk measures can be used instead of Risk the 

directions and Model (6).  

Now, we introduce a model similar to Model (6), but the first constraint differs from that in Model (6). In this 

mode, we apply the CVaR as the risk measure, and it is approximated by discrete points based on the approach 

proposed by [25]. Therefore, the introduced Model (7), by considering the asset under evaluation, is as follows 

As mentioned before, the model tries to measure the  distance between the asset under evaluation and the 

projection point on the efficient frontier with different proportions.  The risk measure is reduced by α
−

 while 

the mean return is increased by α
+

. The optimal value of the model is o o
βCVaR E(Y )

g α g α− ++  that it shows the 

inefficiency score of the asset under evaluation in the direction o o
β

T

CVaR E(Y )
g (g ,g )= . To solve the problem, 

n

j

j

j 1

E(Y(λ)) λ E(Y ).
=

=   

( ) ( )

o o
β

o
β

o

*

PDDF2 CVaR E(Y )

Q

T o

q β CVaR
q 1

o

E(Y )

n

j j k

jk

k 1

T

k

k k k

ρ = max g α g α ,

1
s.t. Γ ( λ Y Γ) CVaR α R ,

(1 β)Q

E Y(λ) E Y α R ,

Y μ a X ,

j 1,2,...,n,

e λ 1, λ 0, α 0, α 0,

X ~ VG(t;σ , ν ,θ ), k 1,2,...,n.

− +

+ −

=

+

=

− +

+

+ − −  −
−

 +

= +

=

=   

=





 
(7) 
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  first, the VG distribution factors 1 nX ,...,X  are simulated by the Monte Carlo method. Then the scenarios of 

assets’ log return, 1 n T

q q qY (Y ,...,Y )=  for q 1,...,Q= , are obtained by the simulated VG factors. The technique 

introduced in [23] is applied to solve the non-linear form of CVaR in the first constraint. So, the left hand of 

the first constraint is approximated by discrete points 1 n T

q q qY (Y ,...,Y )= for q 1,...,Q=  which they are vectors 

in the space nX , and they are simulated by VG factors, and it is approximated based on the Monte Carlo 

simulation technique. The mean return of the model is the second constraint in which 
Q

T

q

q 1

E(Y(λ)) λ E(Y )
=

=  

and it is the weighted average of mean returns. It is noted that CVaR is also calculated by the scenarios of the 

assets’ log return, too.  

The optimal objective value of the model indicates different maximum proportional changes in CVaR and 

mean return of the asset, and the purpose is to maximize
PDDF2ρ in directions of risk measure and mean return, 

separately. If the optimal value equals zero, then the asset under evaluation is just part of the efficient frontier 

[13]. Otherwise, each α
−

 and α
+

 indicates the changes in CVaR and mean return of the asset under 

evaluation that guarantees the projected point of the asset is on the efficient frontier.  

The risk measure VaR could not be applied in Model (7), since then the model becomes the same as Model (6) 

in the mean return-VaR framework. Therefore, for the second model, we are not able to use VaR as the risk 

measure.  

In both models, the asset under evaluation is called PDDF-efficient if *

PDDFρ =0 . However, if *

PDDFρ 0 , then 

the asset is PDDF-inefficient, and *

PDDFρ represents a change in risk measure and mean return that results in a 

projection of the evaluated asset onto the efficient frontier. Therefore, *

PDDF1 ρ− shows the efficiency score of 

the asset under evaluation. 

The models seek to simultaneously minimize the risk measure as the input and maximize the mean return as 

the output of the given asset using the pre-specified direction vector. The objective function can reflect the 

trade-offs between input and output. The PDDF-inefficient measures based on the Direction Vectors (3), (4), 

and (5) are naturally non-radial (Non-proportional). The non-negativity restrictions on the α
−

and α
+

have 

been imposed to make an asset become PDDF-efficient by reducing its risk, and by increasing its mean return. 

The models are VG-based, which they are consider skewness and Kurtosis in performance evaluation, so 

there is no need to consider any constraint for these characteristics separately in the models [24]. It is obvious 

how the optimal value of the models is dependent on the direction vector g .  

3|The Empirical Illustration 

We consider the dataset of the Iran Stock Exchange as a case study. All of the share prices on the stock 

market are publicly available from the official website of Tehran Stock Exchange Market (TSE) [26]. To 

validate the practicality of the proposed models, seven companies are chosen for the 2018-2019 period [24].  

The companies’ names are Iran National Copper Industries (MSMI), Iran Khodro (IKCO), Mapna (MAPN), 

Arman Ati Mes ETF, Asan Pardakht Persian (APPE), Isfahan Steel Company (ZOBI), and Spahan Naft 

(SEPP). Each company is considered a financial asset. The confidence level is considered β 0.90= . We use 

GAMS and MATLAB software to do the computations. To compute the inefficiency score of each asset, 

first, let’s show the skewness and Kurtosis of each asset in Table 1. 
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  Table 1. Skewness and Kurtosis of each asset. 

 

 

 

  

 

 

 

As shown in Table 1, financial returns’ high leptokurtosis and nonzero skewness are far from the Normal 

process, which confirms they have heavy tails. To overcome these restrictions, we adopt the VG process that 

controls skewness and Kurtosis, and it is also heavy-tailed. In Fig. 1, the stock returns of seven companies are 

displayed. 

 

Fig. 1. Seven companies' stock returns.  

The figure demonstrates the returns of the seven assets over time. The rhythm of returns, such as volatility 

or asymmetric tail behavior, characterized by negative skewness and Kurtosis, reflects underlying market 

dynamics. The number of returns jumps in the stock market affects each asset’s efficiency. Therefore, this 

leads us to apply the VG process in assets’ efficiency assessment, since its parameters could control skewness 

and Kurtosis. 

The estimated parameters of the VG process based on the moment estimation method corresponding to each 

asset are recorded in Table 2. The VG factors are simulated by the Monte Carlo method, and then 1000 

scenarios of assets’ log-return are obtained. 

Table 2. Estimated parameters of the VG process. 

 

 

 

 

 

 
 

In Table 3, we present the results of VaR, CVaR, and mean return of simulated scenarios used by VG-based 

models, respectively. These data will be used as the input and the output of the models. 

ASSET SKEWNESS KURTOSIS 

MSMI -2.0873 27.6953 

IKCO -0.0088 2.4636 

MAPN -8.8993 110.8949 

SMIF 1.0106 9.4556 

APPE -4.6107 52.8753 

ZOBI -6.755 83.3473 

SEPP -0.2091 4.0696 

Asset μ  θ  2
σ  ν  

MSMI -0.00086 0.003770 0.2650 0.003337 

IKCO 0.003541 -0.002220 0.1325 0.060132 

MAPN -0.000910 0.005949 0.7685 0.017161 

SMIF 0.007801 0.000696 0.1060 0.804985 

APPE -0.004330 -0.001190 0.1855 0.371983 

ZOBI 0.003873 -0.001290 0.6890 0.170019 

SEPP 0.007139 -0.001380 0.2385 3.692800 
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  Table 3. VaR, CVaR, and Mean return of simulated 

scenarios of assets at confidence level β 0.90.=  

 

 

 

 

 

 

 

Tables 4 and 5 show the inefficiency scores of the proposed models in the mean return-VaR and mean return-

CVaR framework by Models (6) and (7), respectively, under the Directions (3)-(5).  

Table 4. Inefficiency scores in the mean return-VaR and mean return-CVaR framework by 

Model (6) at β 0.90.=  

 

 

 

 

 

 

 

MAPN exhibits the highest inefficiency, with mean  return-CVaR values of 0.93 (Eq. (3)), 0.89 (Eq. (4)), and 

0.81 (Eq. (5)). Its extreme negative skewness (-8.8993) and high Kurtosis (110.8949) indicate a distribution 

prone to significant losses, corroborated by the simulated data’s high VaR (0.7885), CVaR (1.5267), and 

negative mean return (-0.0093). The high Mean return-VaR (0.71 in D1 and D3, 0.67 in D2) further 

underscores MAPN’s substantial risk exposure, contributing to its persistent inefficiency.  ZOBI also shows 

significant inefficiency, with mean return-CVaR values of 0.85 (Eq. (3)), 0.74 (Eq. (4)), and 0.68 (Eq. (5)). Its 

negative skewness (-6.755) and high Kurtosis (83.3473) suggest a risk profile with frequent large negative 

returns, supported by simulated VaR (0.6144) and CVaR (1.1879) and a negative mean return (-0.0026). The 

mean return-VaR values (0.53 in (Eq. (3)), 0.36 in (Eq. (4)), 0.40 in (Eq. (5)) indicate varying risk exposure 

across scenarios. 

MSMI demonstrates moderate inefficiency, with mean return-CVaR increasing sharply from 0.23 (Eq. (3)) to 

0.89 (Eq. (4)), then slightly decreasing to 0.80 (Eq. (5)). Its negative skewness (-2.0873) and high Kurtosis 

(27.6953) suggest a risky distribution, with simulated VaR (0.2093) and CVaR (0.3983) indicating moderate 

risk. The near-zero mean return (-0.0001) and low mean return-VaR (0.12 in Eq. (3)), 0.02 in Eq. (4), and Eq. 

(5) suggest that inefficiency peaks in Eq. (4) due to heightened risk exposure.  IKCO shows lower inefficiency, 

with mean return-CVaR values of 0.14 (Eq. (3)), 0.62 (Eq. (4)), and 0.56 (Eq. (5)). Its near-zero skewness (-

0.0088) and moderate kurtosis (2.4636) indicate a more symmetric distribution, supported by a positive mean 

return (0.0022) and moderate simulated VaR (0.1842) and CVaR (0.3397). The low Mean-VaR (0.08 in Eq. 

(3), 0.01 in Eq. (4), and Eq. (5)) suggests reduced risk in later scenarios, though inefficiency rises significantly 

in Eq. (4). 

SMIF, APPE, and SEPP report mean return-VaR and mean return-CVaR values of 0.00 across all directions, 

indicating no measurable inefficiency. SMIF’s positive skewness (1.0106), moderate Kurtosis (9.4556), and 

Asset Simulated data by VG parameters 
 VaR CVaR Mean-return 

MSMI 0.2093 0.3983 -0.0001 

IKCO 0.1842 0.3397 0.0022 

MAPN 0.7885 1.5267 -0.0093 

SMIF 0.1126 0.2318 0.0028 

APPE 0.0873 0.1690 0.0017 

ZOBI 0.6144 1.1879 -0.0026 

SEPP 0.1898 0.3808 0.0032 

Asset Direction (3) Direction (4) Direction (5) 

 Mean-VaR Mean -CVaR Mean-VaR Mean -CVaR Mean-VaR Mean -CVaR 

MSMI 0.12 0.23 0.02 0.89 0.02 0.80 

IKCO 0.08 0.14 0.01 0.62 0.01 0.56 

MAPN 0.71 0.93 0.67 0.89 0.71 0.81 

SMIF 0.00 0.00 0.00 0.00 0.00 0.00 

APPE 0.00 0.00 0.00 0.00 0.00 0.00 

ZOBI 0.53 0.85 0.36 0.74 0.40 0.68 

SEPP 0.00 0.00 0.00 0.00 0.00 0.00 
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  positive mean return (0.0028) suggest a favorable risk profile, with low simulated VaR (0.1126) and CVaR 

(0.2318). APPE’s negative skewness (-4.6107) and high Kurtosis (52.8753) indicate potential risk, yet its low 

simulated VaR (0.0873) and CVaR (0.1690) and positive mean return (0.0017) suggest effective risk 

management. SEPP’s low skewness (-0.2091), Kurtosis (4.0696), positive mean return (0.0032), and moderate 

VaR (0.1898) and CVaR (0.3808) support its PDDF efficiency.  

The table shows a general trend of increasing mean return-CVaR from Eq. (3) to Eq. (4) for MSMI (0.23 to 

0.89) and IKCO (0.14 to 0.62), aligning with the expected trend of increasing inefficiency. However, MAPN 

and ZOBI exhibit a slight decrease in mean return-CVaR from Eq. (3) to Eq. (4) (MAPN: 0.93 to 0.81, ZOBI: 

0.85 to 0.68), which contradicts the expected trend and may indicate data inconsistencies, as previously noted, 

potentially due to their high negative skewness and Kurtosis distorting risk metrics. The slight decrease in Eq. 

(3) for MSMI (0.89 to 0.80) and IKCO (0.62 to 0.56) suggests a partial alignment with the expected trend, 

with peak inefficiency in Eq. (4).  mean return-VaR values generally decrease from Eq. (3) to Eq. (4) for MSMI 

(0.12 to 0.02), IKCO (0.08 to 0.01), and ZOBI (0.53 to 0.36/0.40), indicating reduced risk at a single 

confidence level. In contrast, MAPN’s mean return-VaR remains high (0.71 to 0.67/0.71). The static zero 

values for SMIF, APPE, and SEPP across directions reinforce their consistent efficiency. 

The increasing mean return-CVaR from Eq. (3) to Eq. (4) for MSMI and IKCO supports the expected trend 

of rising inefficiency. Still, the slight decrease in Eq. (5) for most assets suggests potential data inconsistencies 

or scenario-specific factors. Decision makers or portfolio managers should validate the data and consider 

dynamic strategies to address varying inefficiencies across scenarios. 

Overall, the findings indicate that assessing asset efficiency under different frameworks  incorporating risk-

based measures such as VaR and CVaR can lead to varying outcomes. In particular, directions that focus 

primarily on maximum values of conditional risk and return tend to impose stricter evaluations, Direction (3). 

This highlights the fact that the choice of evaluation criteria, potential data inconsistencies, and analytical 

framework or scenario-specific can significantly influence the final judgment regarding an asset’s efficiency. 

Factors such as Skewness and Kurtosis can also affect the evaluation of asset efficiency  .Therefore, to achieve 

a comprehensive and realistic assessment of asset performance, it is essential to consider the differences 

among evaluation directions and risk measures. Also, Decision makers or portfolio managers should validate 

the data and consider dynamic strategies to address varying inefficiencies across scenarios. 

The inefficiency scores obtained by Model (7) are shown in Table 5. 

Table 5. Inefficiency scores in the mean return-CVaR 

framework by Model (P2) at β 0.90= . 

 

 

 

 

 

 

MAPN exhibits the highest inefficiency, with a mean  return-CVaR of 0.94 across all directions. This aligns 

with its extreme negative skewness (-8.8993) and high Kurtosis (110.8949), indicating a distribution with 

significant downside risk and heavy tails, which likely contributes to its persistent inefficiency. The high  CVaR 

(1.5267) from the simulated data further confirms MAPN’s elevated risk profile and negative mean return (-

0.0093), underscoring its inefficiency.  ZOBI also shows significant inefficiency, with a mean return-CVaR of 

0.88 across all directions. Its negative skewness (-6.755) and high Kurtosis (83.3473) suggest a similar risk 

profile to MAPN, with substantial downside risk and fat-tailed returns. The simulated CVaR (1.1879) 

reinforces ZOBI’s high-risk characteristics, contributing to its inefficiency. 

Asset Direction (3) Direction (4) Direction (5) 
 Mean-CVaR Mean-CVaR Mean-CVaR 

MSMI 0.25 
0.18 
0.94 
0.00 
0.00 
0.88 
0.00 

0.91 
0.69 
0.90 
0.00 
0.00 
0.78 
0.00 

0.83 
0.61 
0.86 
0.00 
0.00 
0.70 
0.00 

IKCO 
MAPN 
SMIF 
APPE 
ZOBI 
SEPP 
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  MSMI and IKCO display moderate inefficiency, with mean return-CVaR values of 0.25 and 0.18, respectively, 

across all directions. MSMI’s significant negative skewness (-2.0873) and high Kurtosis (27.6953) suggest a 

riskier distribution, which aligns with its higher inefficiency compared to IKCO, which has near-zero 

skewness (-0.0088) and moderate Kurtosis (2.4636). The simulated data show MSMI’s CVaR (0.3983) slightly 

higher than IKCO’s (0.3397), consistent with their relative inefficiency levels. 

SMIF, APPE, and SEPP report mean return-CVaR values of 0.00 across all directions, indicating no 

measurable inefficiency, and they are PDDF-efficient. SMIF’s positive skewness (1.0106) and moderate 

Kurtosis (9.4556) suggest a more favorable risk profile, while APPE’s negative skewness (-4.6107) and high 

Kurtosis (52.8753) indicate potential risk that is not reflected in the inefficiency score. SEPP’s low skewness 

(-0.2091) and Kurtosis (4.0696) suggest a stable distribution.  

Unlike the expected trend of increasing inefficiency from Eq. 3 to Eq. 5 noted in prior discussions, the mean 

return-CVaR values in this table remain constant across all directions. This static behavior suggests that the 

inefficiency of each asset is unaffected by changes in the conditions represented by Eqs. (3)-(5). It may indicate 

that the scenarios are similar in their impact on inefficiency or that the mean return-CVaR metric, as calculated 

here, does not capture directional variations. The consistency of high inefficiency for MAPN and ZOBI, 

combined with their extreme skewness and Kurtosis, suggests that their inefficiency is driven by inherent 

distributional characteristics rather than scenario-specific factors. Similarly, the zero inefficiency for SMIF, 

APPE, and SEPP may reflect a structural feature of these assets, such as hedging or low exposure to risk 

factors in all directions. 

The table reveals significant variation in asset inefficiency, with MAPN and ZOBI exhibiting the highest levels 

(mean return-CVaR of 0.94 and 0.88), driven by their extreme negative skewness, high Kurtosis, and elevated 

VaR/CVaR values. MSMI and IKCO show moderate inefficiency, while SMIF, APPE, and SEPP report zero 

inefficiency, potentially reflecting efficiency or data limitations. The static mean return-CVaR values across 

Eqs. (3)-(5) suggest that inefficiency is consistent across scenarios, which contrasts with the expected trend of 

increasing inefficiency. This discrepancy, combined with the distributional characteristics from the skewness 

and kurtosis table, underscores the need for further data validation and careful portfolio management to 

address the high inefficiency of assets like MAPN and ZOBI while leveraging the apparent stability of SMIF, 

APPE, and SEPP. 

4|Conclusion 

Portfolio diversification remains essential for optimizing investment outcomes across varied assets.  This study 

employs DEA with DDFs and the VG process to assess asset efficiency, enabling investors to optimize 

portfolios by modeling leptokurtic, skewed, and fat-tailed return distributions. The first model reveals that 

asset efficiency varies with the mean return-risk framework, with stricter evaluations under high-risk and 

return criteria, influenced by skewness and Kurtosis. The second model’s static mean return-CVaR values 

across directions suggest inefficiencies driven by intrinsic distributional properties rather than scenario-

specific factors. In conclusion, the observed patterns in asset returns mention the complex interplay of risk 

and return, driven by market-specific and external factors. These findings emphasize the need for robust 

analytical models, such as those incorporating the VG process, to capture non-normal return distributions 

and inform efficient portfolio construction to help the investors. Further investigation into the drivers of 

these patterns is essential for optimizing investment decisions in volatile market environments. Future 

research aims to integrate DEA with machine learning techniques to enhance predictive capabilities and 

improve decision-making. 
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