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Abstract

Graph theory provides a framework for clearly representing relationships between objects [1, 2]. In the
fields of chemistry and biology, graph-based concepts are widely applied. Hypergraphs generalize classical
graphs by allowing hyperedges to connect any nonempty subset of vertices [3]. Superhypergraphs extend
this concept by iterating the powerset operation, thereby generating nested layers that capture hierarchical
and self-referential structures among collections of vertices [4]. A molecular graph models a molecule with
atoms as vertices and bonds as edges, representing its structural connectivity. Fuzzy graphs and fuzzy
hypergraphs enrich these structures by assigning membership degrees to vertices and (hyper)edges. In
this paper, we introduce definitions of molecular fuzzy graphs, hypergraphs, and superhypergraphs, and
examine their properties and potential applications.

Keywords: Fuzzy graphs, Fuzzy hypergraphs, fuzzy superhypergraphs, hypergraphs, superhypergraphs

1|Preliminaries

We record basic notions and notation used throughout. Unless stated otherwise, all graphs are finite, undirected
(multiple edges are allowed only when explicitly declared).
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1.1|SuperHyperGraphs

Classical hypergraphs enrich ordinary graphs by allowing an edge to join any finite number of vertices; this
makes them apt for modeling multiway relations [5, 3, 6, 7]. A SuperHyperGraph pushes this idea further by
building vertices and edges from iterated powersets of a ground set; this perspective has recently attracted
attention in several settings [8, 9, 4, 10]. Applications have appeared in, e.g., molecular modeling, network
analysis, and signal processing [11, 12, 13]. Throughout, the level parameter n is a fixed nonnegative integer.

Definition 1.1 (Base set). A base set (or ground set) is a fixed finite set S from which higher-level objects are
formed:

S = {z| x lies in the chosen domain }.

All constructions below ultimately draw their elements from S.

Definition 1.2 (Powerset). [14, 15] For a set X, its powerset is
PX)={A|ACX}
We also use the nonempty powerset P*(X) := P(X) \ {2}.

Definition 1.3 (Iterated powerset). [16, 17, 18] For k € Ny define
PUX)=X, PFIX):=PP*X)).
Similarly, with nonempty levels,
0 k41 .
(P)(x) =%, (P)"7(X) = P((P)F(X)).

Definition 1.4 (Hypergraph [19, 3]). A hypergraph is a pair H = (V(H), E(H)) where V(H) # & and
E(H) CP(V(H)). In this paper we work with finite V(H) and finite E(H).

Definition 1.5 (n-SuperHyperGraph). [20, 21, 22, 23] Fix a finite base set Vj and a level n € Ny. An
n-SuperHyperGraph is a pair
SHG™ = (V,E),  VCP"(V), ECP(V),

where elements of V' are the n-supervertices and each e € E is a nonempty set of supervertices (an n-superedge).

Example 1.6 (Level n = 0: Carboxylate COO™ as a three-center interaction). Let the base (atom) set be
Vo={C, O1, Og, Hy,...}.
At level n = 0 we take supervertices to be atoms, so choose
V={C, 01, 02} € P’V) =M.
Define the hyperedge family E C P*(V') by
E={er, €1, €o2}, er ={C,01,02}, e,1={C,01}, ey2={C,02}.

Then SHG) = (V, E) is an n-SuperHyperGraph: e, models the three—center m-system delocalized over C, Oy, O2,
while e,.1 and e, represent the corresponding o-interactions. By construction V. C P2(Vy) and E C P*(V).
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Example 1.7 (Level n = 1: Water trimer (H20)3 as a hydrogen—bonded ring of molecules). Let the base set V;
list the atoms of three water molecules:

Vb = { OA7 HAl; HA27 037 H317 HBQ7 OC7 HCh HCQ }
At level n = 1 we take supervertices to be sets of atoms (i.e., whole molecules). Define
My ={0a,Ha1,Ha2}, Mp ={0p,Hp1,Hp2}, Mc ={Oc¢c,Hc1,Hca},
and set
V ={Ma,Mp,Mc} C P'(Vo) =PW).
Model cooperative hydrogen bonding by the nonempty sets of supervertices
E = { ering, €aB, €Bc, cca} S P(V),
where
ering = {Ma,Mp, Mc}, eap = {Ma, Mg}, epc={Mp,Mc}, eca={Mc,Mas}.

Thus SHGW = (V, E) is an n-SuperHyperGraph whose supervertices are molecules (level-1 aggregates of atoms)
and whose superedges capture multi-molecule hydrogen—bond interactions, including the three-membered cyclic
motif eing. By construction V- C P1(Vp) and E C P*(V).

1.2|Fuzzy n-SuperHyperGraphs

A fuzzy set assigns a membership degree in [0, 1] to each element of a universe [24, 25]. Fuzzy graphs and
fuzzy hypergraphs endow vertices and (hyper)edges with such degrees [26, 27, 28, 29, 30, 31, 32]. A fuzzy
n-SuperHyperGraph is a higher-level network structure assigning membership degrees to supervertices and
superedges for modeling complex relations (cf.[33, 21]).

Definition 1.8 (Fuzzy Graph). A fuzzy graph is a pair G = (o, 1) on a nonempty finite vertex set V', where
o :V —[0,1] assigns to each v € V a vertex—membership degree and p: V x V — [0,1] is a fuzzy edge relation
satisfying, for all u,v € V|

n(uyv) < minfo(),o(v)}.
This generalizes a crisp graph by allowing uncertainty on vertices and edges.

Example 1.9 (Fuzzy Graph on three vertices). Let V' = {v1,v9,v3} and define the vertex—-membership
o(vr) = 0.90, o(vg) = 0.70, o(vs) = 0.50.
Define the fuzzy edge relation p: V x V — [0, 1] (symmetric) by
U1 (%] V3
v1 70.90 0.60 0.45
B= vy <O.6O 0.70 0.40)-

vs \0.45 0.40 0.50

Verification of the constraint u(u,v) < min{o(u),o(v)}:
p(vy,v9) = 0.60 < min{0.90,0.70} = 0.70, p(vy,v3) = 0.45 < min{0.90,0.50} = 0.50,

p(va,v3) = 0.40 < min{0.70,0.50} = 0.50,
and p(v;,v;) = o(v;) for i = 1,2,3. Hence G = (o, u) is a fuzzy graph.

Definition 1.10 (Fuzzy Hypergraph). A fuzzy hypergraph is a quadruple G = (V, E, ¢, w) where V is the
vertex set; E C P(V)\ {0} is the family of hyperedges; ¢ € [0, 1]/F1*IV] with 4. ; the degree that i € V belongs
to e € E, subject to

Yo wei=1 (Ve€E), > wei>0 (VieV);

% ecE
and w: E — R+ assigns a positive weight to each hyperedge.
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Example 1.11 (Fuzzy Hypergraph on four vertices). Let V = {1, 29,23, 24} and take the hyperedge family
E = {e1,e2}, e1 = {x1, 22,23}, ex = {x2, 24}
Define 1 € [0, 1]IE*IVI by
(’(/)617Z17wel,E27,¢)61,137w61,I4) = (04? 0'3) 037 0)?
(wez,mla1;[)62,1271/)62@337/}62,%4) = (07 05) 07 05)

Then for each e € E, ZieV Yes =1: 0.4+0.340.3 =1 for e; and 0.5+ 0.5 =1 for e;. Moreover, each vertex
participates with positive total degree:

S ey =04>0, > s, =034+05=08>0, > Peu =030, > tes, =05>0.

eck eel eelR eeFE
Assign positive weights w : E — Ry, e.g., w(e;) = 2.0 and w(es) = 1.2. Thus G = (V, E, ¢, w) is a fuzzy
hypergraph.

Definition 1.12 (Fuzzy n-SuperHyperGraph). (cf.[34, 35]) Let SHG™ = (V, E) be as above with V C P"(Vp)
and E C P*(V). A fuzzy n-SuperHyperGraph is a quadruple

(V,E,o,pn),

where o : V' — [0, 1] assigns a membership degree to each supervertex and p: E — [0, 1] assigns a membership
degree to each superedge, subject to the appurtenance constraint

ule) < mein o(v) for every e € E.
vee

Example 1.13 (Fuzzy n-SuperHyperGraph at level n = 1). Let the base set be Vi = {a,b,¢,d}. At level n =1,
supervertices are nonempty subsets of V. Let

A={a,b}, B={bec}, V={AB}CPY (W),
and take the superedge family E = {ej,eq} C P*(V) with
e1 = {A, B}, es = {A}.

Define the supervertex membership o : V' — [0, 1] by

o(A) =080,  o(B)=0.60,
and the superedge membership p: E — [0, 1] by

wu(er) = 0.55, u(ez) = 0.78.
Verification of the appurtenance constraint p(e) < minge. o(v):

u(er) =0.55 < min{o(A4),0(B)} = min{0.80,0.60} = 0.60,
u(es) =0.78 < min{o(A4)} = 0.80.

Hence (V, E, o, u) is a fuzzy 1-SuperHyperGraph.

1.3|Molecular Graph

A molecular graph models a molecule with atoms as vertices and bonds as edges, representing its structural
connectivity [36, 37, 38, 39, 40, 41]. Related concepts include molecular hypergraphs [11, 42, 43, 44], which
extend this framework to capture higher-order interactions among multiple atoms simultaneously.

Definition 1.14 (Molecular Graph). [36, 37] A molecular graph is a finite, simple, undirected graph G = (V, E)
in which each vertex v € V represents an atom and each edge e = {u, v} € F represents a chemical bond between
atoms u and v. (Optionally, vertex/edge labels may encode atom types and bond types or orders.)

Example 1.15 (Molecular Graph example: Methane (CHy4) connectivity). A molecular graph is a finite simple
undirected graph whose vertices are atoms and edges are chemical bonds. For methane, let

V= {Ca H17 H27 H3a H4}7 E= {{Cy H1}7 {07 H2}7 {Ca H3}7 {Oa H4}}
Then G = (V, E) captures the tetrahedral connectivity of CH, without imposing any edge orientation.
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1.4|Fuzzy Molecular Graph

A fuzzy molecular graph assigns [0, 1] membership degrees to atoms and bonds on a molecular graph, modeling
uncertainty in structure (cf.[45, 46, 47, 48]).

Definition 1.16 (Fuzzy Molecular Graph). (cf.[45, 46, 47, 48]) Fix finite attribute sets 3y (atom attributes
such as element, charge, isotope) and g (bond attributes such as order or type). A fuzzy molecular graph is a
sextuple
MF = (‘/a E,AV,)\E,O’,,U),

where

e V is a finite set of atoms;

o EC {{u,v}:u,v €V, us#v} is a finite set of (undirected) bonds;

e \y : V — Yy assigns an attribute to each atom;

e \p: E — Y assigns an attribute to each bond;

o 0:V —[0,1] is the vertex (atom) membership function;

e u: E—0,1] is the edge (bond) membership function.
These membership functions satisfy the standard fuzzy-graph consistency constraint

p({u,v}) < min{o(u),o(v)} for every {u,v} € E.

We call (V, E, Ay, Ag) the underlying (crisp) molecular graph of Mp. A crisp molecular graph is recovered as
the special case 0 =1 and 1 = 1g (the indicator of E).

Incidence-aware variant (optional). One may additionally specify an incidence membership b : Vx E — [0,1]
with

Y(v,e) =0 ifv e, P(v,e) < min{o(v),pu(e)} forall (v,e) €V x E,
to explicitly grade the strength with which atom v participates in bond e.

Example 1.17 (Tautomeric proton shift (keto—enol equilibrium)). Consider a three-atom fragment capturing
the migrating proton in a keto—enol pair. Let

V ={04, C,, H*}, E:{{Ol,H*}, {CQ,H*}}.
Choose finite attribute sets Xy = {O, C,H} and ¥ = {single} and define labels
Av(01) =0, \v(Cy) =C, \yv(H*) =H, Ae({01, H*}) = Ap({Cq, H" }) = single.
A fuzzy molecular graph Mp = (V, E, Ay, Ag, 0, 1) modeling the time-averaged population may be specified by
0(01) =0(Cy) =0(H") = 1.00,
w({O1,H*}) = 0.70, w({Cq, H*}) = 0.30.
The appurtenance constraint holds since, for each edge e € F,
wu(e) < min{o(its endpoints)} = min{1,1} = 1.

Interpretation: the proton spends 70% of the time bound to O (enol-like) and 30% to C,, (keto-like), while all
three atoms are always present (o = 1).

Example 1.18 (Crystallographic partial occupancy of lattice water). In many crystal structures, a solvent
water site is partially occupied. Let a single water molecule at a lattice site be modeled by

V= {Ow; le, H’LU2}7 E= {{Owanl}a {Owan2}}'
With Xy = {O,H} and X = {single}, set
M (Oy) =0, Av(Hy) =H (i =1,2), Ag({Ouw, Hy; }) = single (i = 1,2).
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Suppose the refined site occupancy is 0.35. A consistent fuzzy specification is
0(Ow) = 0(Hyw1) = 0(Hy2) =035, p({Ow, Hu1}) = 0.30, pu({Ow, Hu2}) = 0.28,
which satisfies, for each bond,
w({Ow, Hyi}) < min{o(Oy),0(Hy:)} = min{0.35,0.35} = 0.35 (i =1,2).

Interpretation: the water molecule occupies the site 35% of the time; when present, the O—H bonds are realized
with degrees consistent with that partial occupancy.

2|Main Results

As the main outcome of this paper, we introduce definitions of new graph classes and examine their properties.

2.1|Fuzzy Molecular HyperGraph
A fuzzy molecular hypergraph represents atoms and hyperbonds with graded memberships, extending molecular

graphs to uncertain multi-center chemical interactions.

Definition 2.1 (Fuzzy Molecular HyperGraph (FMHG)). Fix finite attribute sets Xy (atom attributes) and
Y (hyperbond attributes). A fuzzy molecular hypergraph is a septuple
MFH = (‘/’ E7AVa)‘E70-7/J’7¢)7

where

e V is a finite set of atoms;

E CP(V)\ {2} is a finite family of (undirected) hyperbonds;

Av 1V — Xy and A\ : F — Y assign chemical attributes to atoms and hyperbonds;

o:V —[0,1] is the atom membership function;

w: E —[0,1] is the hyperbond membership function;
e ¢:V x E —[0,1] is the incidence membership, with (v, e) = 0 whenever v ¢ e,
and the fuzzy consistency constraints hold for every e € E:

ule) < Igleigcr(v), Y(v,e) < min{o(v),u(e)} for all v € e. (1)

Remark 2.2. Chemically, o(v) grades the presence/uncertainty of atom v (e.g., partial occupancy), u(e) grades
the existence/strength of the multi-center interaction e, and (v, €) grades how strongly atom v participates in
that interaction.

Example 2.3 (Diborane ByHg: three-center two-electron (3c—2e) B-H-B bridges). (cf.[49, 50]) Let
V = {Bi, Ba, Hy1, Hyz, Hys, Hya, Hyy, Hya
where H;, are terminal hydrogens and Hpe are bridging hydrogens. Take
E = {ep, en2, €11, €12, 3, €14} CP(V)\ {@},
with
ep1 = {B1, Hp1, Ba},  epa = {B1, Hpa, B2}, eti = {Bagy, Hui} (1 =1,...,4),
where a(1) = @(2) = 1 and «(3) = a(4) = 2. Choose finite attribute sets ¥y = {B,H} and ¥ = {3c—2e, 2c2¢}

and define labels by element/bond type: Ay (B;) = B, Av(Hs) = H, Ag(epe) = 3c2e, Ap(ete) = 2¢2e. Let
atom membership and hyperbond membership be

o(B1)=0(Bg) =1, o(Hy)=1(i=1,...,4), o(Hp)=o0(Hp)=0.90,
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0.95, i=1,2,
0.92, i=3,4.
Define the incidence membership 1 on vertices contained in each hyperedge by
Y(v,e) = pule) ifwv€Ee, Y(v,e) =0 ifuvée.
Verification of constraints for a representative edge: for ey; = {B1, Hp1, B2},

min o(v) = min{1,0.90,1} = 0.90, pu(ep) =0.80 <0.90, ¥ (v,ep1) =0.80 < min{o(v), u(ep1)} (v € ep1).

vEept

ulepr) = 0.80, p(ep2) = 0.75, pler) = {

All other edges satisfy the same inequalities by construction. Hence Mprpy = (V, E, Ay, Ag, 0, 1, ¢) is an FMHG
for diborane.

Example 2.4 (u3-Oxo trinuclear iron core FezO). (cf.[51]) Let V = {Fey, Fes, Fes, O, } and
E={eu,, e1,e2,e3}, eu, ={Fei,Fes,Fes,0,,}, e ={Fe;,0,,} (i=1,2,3).
Let Xy = {Fe,O} and ¥ = {us-oxo,Fe-O} with labels Ay (Fe;) = Fe, Av(0,,) = O, Ag(eu,) = psz-oxo,
Ae(e;) = Fe-O. Choose
o(Fe;)) =1 (i=1,2,3), 0(Oy,) =1,
p(eus) = 0.85, wu(er) =0.90, u(es) =0.88, u(es) =0.89,
and set (v, e) = p(e) if v € e and 0 otherwise. Then for e,
min o(v) =1 = pley,) =085 <1, (v,eu,)=0.85 <min{l,0.85} = 0.85 (v € e,,),

vEey,

and similarly for each pairwise Fe-O edge e;. Thus this FMHG represents the multi-center p3-oxo interaction
consistently.

Example 2.5 (Benzene CgHg: delocalized m-sextet). (cf.[52]) Let V = {C,...,Cq, Hy, ..., Hg} and consider
the hyperedge family

E = {e,r, €oly--- 760—’6},
where the delocalized m-system is modeled by
er = {C1,Cs,C5,Cy,Cs5,Cs},
and each 0 C-H bond by e,; = {C;, H;}, i =1,...,6. Let ¥y = {C,H} and ¥ = {m-system, C-H} with
obvious labels. Choose full atom presence
o(Cy)=0(H;) =1 (i=1,...,6),
and hyperbond memberships
wu(er) = 0.90, pulesi) =098 (i=1,...,6).
Define ¢ (v, e) = u(e) if v € e and 0 otherwise. Then
mino(v) =1 = puler) =0.90 <1, Y(v,ex) = 0.90 < min{1,0.90} = 0.90 (v € e,),

vEenr

and for each e, 4,

min o(v) =1 = ple,;) =098 <1, (v,es;) =0.98 <min{l,0.98} = 0.98.

vEes i

Hence (V, E, Ay, A\g, 0, u, ) is an FMHG encoding the six-center w-delocalization together with the local C-H
interactions.

Theorem 2.6 (FMHG generalizes the fuzzy molecular graph). There exist maps
I: {fuzzy molecular graphs} — {FMHGSs}, U: {FMHGs} — {fuzzy molecular graphs},

such that for every fuzzy molecular graph Mg we have U(I(Mp)) = M. Hence fuzzy molecular graphs embed
as a special case of FMHGSs (hyperedges of size 2), so FMHGSs strictly generalize fuzzy molecular graphs.
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Proof: Let Mp = (V,E® \y, /\g),a, 1) be a fuzzy molecular graph. Define
IMp) == (V, E:= E® Ay, Ap =2, 0, pi=u®, ¢),
where for all e = {u,v} € E = E? we put

1/1(%6) = ILL(2)(€), 7/)(’076) = N’(z)(e)7 1/1(%6) =0 (IEV\&)

We verify the FMHG constraints (1). Since u(?(e) < min{o(u),o(v)} by the fuzzy molecular graph condition,
we get

and for z € e,
Y(a,e) = p?(e) < minfo(z),u®(e)} = min{o(),u(e)}.
Also (x,e) = 0 when z ¢ e by definition. Thus I(Mp) is an FMHG.

Conversely, for an FMHG Mpgy = (V, E, A\v, Ag, 0, 1, %) define
UMrpg) = (V, E(Q), Av, )\532)7 o, M(Q))7

where E?) :={ec E: |e|] =2}, /\g) = \pg|p@, and p?® := p|pe . For any e = {u,v} € E®), the FMHG
axiom gives p(?(e) = p(e) < min{o(u),o(v)}, so U(Mpg) is a fuzzy molecular graph.

Finally, applying U to I(My) does not change V, E?) Ay, )\g), o, or u? because (M) uses only size-2
hyperedges with the same labels and memberships. Hence U(I (M F)) = Mp. O

Theorem 2.7 (FMHG is a fuzzy hypergraph). For any fuzzy molecular hypergraph Mgy = (V, E, Ay, Ag, o, p, ),
the quintuple

H o= (V.E,0,u.1)
is a fuzzy hypergraph.

Proof: By definition of FMHG, E C P(V)\{@}, 0 :V = [0,1], u: E — [0,1], and ¢ : V x E — [0,1] with
¥(v,e) =0 for v ¢ e. It remains to verify the fuzzy constraints.

Fix e € F and enumerate e = {v1,...,v;}, k > 1. Put o; := o(v;) € [0,1] and 8 := p(e) € [0,1]. The FMHG
axiom yields

= < i 3
B=mple) < min o,
which is exactly the hyperedge—vertex compatibility for fuzzy hypergraphs. For each j € {1,..., k}, the incidence
constraint in FMHG gives

P(vj,e) < min{o(v;), pu(e)} = min{e;, S} €[0,1].

Thus all fuzzy hypergraph axioms hold, and H is a fuzzy hypergraph. O

Proposition 2.8 (Crisp recovery and conservative extension). If o =1, u(e) € {0,1} and (v, e) = 1y - p(e),
then Mgy reduces to a (crisp) labeled molecular hypergraph (V, E, Ay, A\g). If, in addition, all hyperedges have
size 2, one recovers a (crisp) labeled molecular graph.

Proof: With o0 =1 and p(e) € {0, 1}, the inequality p(e) < min,e. o(v) is automatic. The chosen v satisfies
P(v,e) =0 for v ¢ e and ¢Y(v,e) = 1 for v € e when p(e) = 1, hence ¥ (v,e) < min{o(v), 1(e)} holds with
equality when v € e and u(e) = 1. Therefore (V, E) is a crisp hypergraph carrying labels Ay, Ag. If |e| = 2 for
all e, this is precisely a (crisp) labeled molecular graph. O
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2.2|Fuzzy Molecular SuperHyperGraph

A fuzzy molecular superhypergraph assigns membership degrees in [0, 1] to supervertices (atoms, groups, or
higher aggregates) and to superedges (multi—center interactions) at a fixed hierarchical level, thereby extending
fuzzy molecular hypergraphs in a type—consistent way.

Definition 2.9 (Fuzzy Molecular SuperHyperGraph (level n)). Fix n € Ny, a finite base (atom) set Vp, and
finite attribute sets Xy (vertex/aggregate attributes) and Y g (edge/interaction attributes). A fuzzy molecular
superhypergraph at level n is an octuple

My = (VB Ay A, o, 1,95 V6)
consisting of:
o a finite level-n vertex set V.C P™(V}) (the n—supervertices);
e a finite edge family E C P*(V) (each e € E is a nonempty set of supervertices);
e label maps A\y : V — Xy and Ag : E — Yg;
e membership maps o : V' — [0, 1] (vertex membership) and p : E — [0, 1] (edge membership);
e an incidence membership ¢ : V x E — [0,1] with ¢(v,e) = 0 whenever v ¢ ¢;

subject to the fuzzy consistency constraints, for every e € E and v € V,

ple) < mino(w),  Y(v,e) < minfo(v),ple)} ifvee. (2)

Remark 2.10. Chemically, n = 0 models individual atoms; n = 1 may group atoms into functional moieties;
larger n support hierarchical assemblies. The functions o, i, and ¢ quantify presence/strength and participation
under uncertainty.

Example 2.11 (Level n = 1: Serine-histidine-aspartate catalytic triad in a serine protease). (cf.[53]) Let the
base atom set Vj collect all atoms of three residues Serjgs, Hissz, and Asp;g,. At level n = 1, supervertices are
nonempty subsets of Vj; take the residue-level aggregates

S = {atoms of Ser195}, H = {atoms of Hiss;}, D = {atoms of Asp;ys},

and set V = {S, H,D} C P(Vp). Let the superedge family be

E = {emad, €SH, €HD } CP(V), etriad = {5, H,D}, esyg ={S,H}, eup={H,D}.
Choose label sets Xy = {Ser, His, Asp} and X = {charge relay, H-bond} and define

Av(S) = Ser, A\yv(H) =His, Ayv(D) = Asp, Ag(etriad) = charge relay, Ag(esy) = Ap(enp) = H-bond.
Pick memberships (steady-state ensemble averages)
o(S)=o0(H)=0(D) = 1.00, p(etriag) = 0.85, p(esy) =0.90, wplegp)=0.88,
and define incidence (v, e) = p(e) if v € e and 0 otherwise. Then the FMSHG constraints hold, e.g.
t(€triaa) = 0.85 < min{1,1,1} =1, (S, etriad) = 0.85 < min{1,0.85} = 0.85,

and similarly for H, D and for esy,eygp. Thus M}%H = (V,E,Av, Ag, 0, u,¥; Vp) models the triad.

Example 2.12 (Level n = 1: Aqueous first hydration shell of Na*t). (cf.[54]) Let Vy contain the ion Na and
three water molecules with atoms W; = {O;, H;1, H;o} for i = 1,2,3. At level n = 1 define the supervertices

N ={Na}, M, =Wy, M;=Wy, Mz=Ws,
and set V = {N, My, My, M3} C P1(Vj). Use the superedges
E = { egnen, €1,e2,e3} CP(V), €shell = {N, M1, Mo, M3}, e; = {N, M;}.
Take Xy = {ion, water} and X g = {first-shell, ion—water} with
Av(N) =ion, Ay (M;) = water; AE(eshen) = first-shell, Ag(e;) = ion—water.
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Choose memberships reflecting partial residence

o(N)=1.00, o(M;)=0.95 o(Ms2)=0.90, o(Ms) = 0.85,

1(eshenn) = 0.80, u(er) = 0.88, u(ez) =0.84, p(es) =0.78,
and let ¢ (v,e) = u(e) if v € e and 0 otherwise. Check, e.g.,

p(eshen) = 0.80 < min{1.00, 0.95,0.90,0.85} = 0.85, (M3, eshen) = 0.80 < min{0.85,0.80} = 0.80,
and for eg,
p(es) = 0.78 < min{1.00,0.85} = 0.85, (N, e3) =0.78 < min{1.00,0.78} = 0.78.

Hence (V, E, o, i, 1) satisfies the FMSHG constraints.

Example 2.13 (Level n = 2: SDS micelle with a water corona). (cf.[55]) Let Vp collect atoms of k sodium
dodecyl sulfate (SDS) molecules M; (i = 1,...,k) and m water molecules W; (j =1,...,m). At level n =1,

view each molecule as a supervertex: M; = M;, W; = Wj, so V= {Ml, e, My, W, .,Wm} CPY (Vo). At
level n = 2, define two aggregate supervertices (sets of level-1 objects)

C= {Ml, e Mk} (surfactant cluster), W = {Wl, cey Wm} (hydration shell),

and take V = {C,W} C P?(V}). Use the superedges

E = { emicelles €interface } S PH(V), emicelle = {C'},  Cinterface = 1C, W}.
Let Xy = {cluster, shell} and X = {aggregate, contact} with

Av (C) = cluster, Ay (W) = shell, AE(Emicelle) = aggregate, Ag(€interface) = contact.

Choose memberships

a(C) =0.95, a(W) =0.90, pemicenie) = 0.92,  p(€interface) = 0.80,
and set ¢ (v, e) = u(e) if v € e and 0 otherwise. Then

fi(Emicetie) = 0.92 < min{o(C)} = 0.95,  fi(€intertace) = 0.80 < min{0.95,0.90} = 0.90,

and, for incidence,

$(C, eingertace) = 0.80 < min{0.95,0.80} = 0.80, (W, eintertace) = 0.80 < min{0.90,0.80} = 0.80.
Hence M}zs)H = (V,E,A\v,Ag,0,u,v; V) is a valid level-2 FMSHG capturing a micelle and its water corona.

Theorem 2.14 (FMSHG generalizes the fuzzy molecular hypergraph). When n =0 (so P°(Vy) = Vp), every
fuzzy molecular hypergraph Mrpg = (V, E, A\v, Ag, 0, u,¢) with V. C Vo and E C P*(V) embeds into a fuzzy
molecular superhypergraph Méog p such that a suitable forgetful map returns Mpg ezactly.

Proof: Define the embedding
IO(MFH) = (‘/7 Ea )‘Va )‘E7 g, [, 7% ‘/0)5

viewing V C Vg and E C P*(V) = P*(P°(Vp)). The constraints (2) are exactly the fuzzy molecular hypergraph
axioms, hence Iy(Mpp) is a valid level-0 FMSHG.

Define the forgetful map
Uo(V,E,AV,AE,O',,LL,w;Vo) = (MEa )‘Vv)‘E;O—7Ma d})

Then Ugo Iy = id on fuzzy molecular hypergraphs, proving that FMSHGs (at n = 0) strictly generalize fuzzy
molecular hypergraphs. (I

Theorem 2.15 (Forgetting labels yields a fuzzy superhypergraph). Let ./\/l;;nS)H =(V,E,\v, g, 0, 1, ¥; Vo) be a
fuzzy molecular superhypergraph at level n. Then the quadruple

FSH™ := (V. E, o, 1)
is a fuzzy superhypergraph at level n, i.e.,
ule) < mein o(v) foralle € E. (3)
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Proof: By Definition 2.9, V' C P"(V}) is finite and E C P*(V) is a finite family of nonempty sets of supervertices.
The first inequality in (2) is precisely (3), so (V, E, o, u) satisfies the fuzzy superhypergraph axiom. O

Proposition 2.16 (Crisp recovery; conservative extension). If o = 1, u(e) € {0,1} for all e € E, and

Y(v,e) = 1gyeey - ple), then M}?H reduces to a labeled molecular superhypergraph (V, E, Ay, Ag) at level n. For
n = 0 this is a labeled molecular hypergraph; if, in addition, every e € E has |e| = 2, one recovers a labeled
molecular graph. Hence the fuzzy model is a conservative extension of the crisp one.

Proof: With 0 = 1 and p € {0,1}, the inequality p(e) < minye.o(v) = 1 is automatic. The chosen ¢ is 0
off-incidence and 1 on-incidence when p(e) = 1, so (2) holds. Forgetting o, i, ¢ yields the crisp labeled structure.
The stated specializations follow immediately. O

3|Conclusion
In this paper, we introduced definitions of molecular fuzzy graphs, hypergraphs, and superhypergraphs, and

examined their properties and potential applications. Through these frameworks, it becomes possible to represent
hierarchical molecular structures as well as molecular structures with uncertainty.

In future work, we aim to conduct quantitative analyses of the proposed concepts through computational
experiments. We also plan to explore possible extensions employing Intuitionistic Fuzzy Graphs [56, 57],
Neutrosophic Graphs [58, 59, 60, 61], hyperfuzzy sets [62, 63, 23], and Plithogenic Graphs [64, 65, 66, 67, 68].
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