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Abstract

Graph theory provides a framework for clearly representing relationships between objects [1, 2]. In the
fields of chemistry and biology, graph-based concepts are widely applied. Hypergraphs generalize classical
graphs by allowing hyperedges to connect any nonempty subset of vertices [3]. Superhypergraphs extend
this concept by iterating the powerset operation, thereby generating nested layers that capture hierarchical
and self-referential structures among collections of vertices [4]. A molecular graph models a molecule with
atoms as vertices and bonds as edges, representing its structural connectivity. Fuzzy graphs and fuzzy
hypergraphs enrich these structures by assigning membership degrees to vertices and (hyper)edges. In
this paper, we introduce definitions of molecular fuzzy graphs, hypergraphs, and superhypergraphs, and
examine their properties and potential applications.
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1|Preliminaries
We record basic notions and notation used throughout. Unless stated otherwise, all graphs are finite, undirected
(multiple edges are allowed only when explicitly declared).
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1.1|SuperHyperGraphs
Classical hypergraphs enrich ordinary graphs by allowing an edge to join any finite number of vertices; this
makes them apt for modeling multiway relations [5, 3, 6, 7]. A SuperHyperGraph pushes this idea further by
building vertices and edges from iterated powersets of a ground set; this perspective has recently attracted
attention in several settings [8, 9, 4, 10]. Applications have appeared in, e.g., molecular modeling, network
analysis, and signal processing [11, 12, 13]. Throughout, the level parameter n is a fixed nonnegative integer.

Definition 1.1 (Base set). A base set (or ground set) is a fixed finite set S from which higher-level objects are
formed:

S = {x | x lies in the chosen domain }.
All constructions below ultimately draw their elements from S.

Definition 1.2 (Powerset). [14, 15] For a set X, its powerset is

P(X) = {A | A ⊆ X }.

We also use the nonempty powerset P∗(X) := P(X) \ {∅}.

Definition 1.3 (Iterated powerset). [16, 17, 18] For k ∈ N0 define

P 0(X) := X, P k+1(X) := P
(
P k(X)

)
.

Similarly, with nonempty levels,(
P∗)0(X) := X,

(
P∗)k+1(X) := P∗((P∗)k(X)

)
.

Definition 1.4 (Hypergraph [19, 3]). A hypergraph is a pair H = (V (H), E(H)) where V (H) ̸= ∅ and
E(H) ⊆ P∗(V (H)). In this paper we work with finite V (H) and finite E(H).

Definition 1.5 (n-SuperHyperGraph). [20, 21, 22, 23] Fix a finite base set V0 and a level n ∈ N0. An
n-SuperHyperGraph is a pair

SHG(n) = (V,E), V ⊆ P n(V0), E ⊆ P∗(V ),

where elements of V are the n-supervertices and each e ∈ E is a nonempty set of supervertices (an n-superedge).

Example 1.6 (Level n = 0: Carboxylate COO− as a three-center interaction). Let the base (atom) set be

V0 = {C, O1, O2, H1, . . . }.

At level n = 0 we take supervertices to be atoms, so choose

V = {C, O1, O2 } ⊆ P 0(V0) = V0.

Define the hyperedge family E ⊆ P∗(V ) by

E =
{
eπ, eσ,1, eσ,2

}
, eπ = {C,O1, O2}, eσ,1 = {C,O1}, eσ,2 = {C,O2}.

Then SHG(0) = (V,E) is an n-SuperHyperGraph: eπ models the three–center π-system delocalized over C,O1, O2,
while eσ,1 and eσ,2 represent the corresponding σ-interactions. By construction V ⊆ P 0(V0) and E ⊆ P∗(V ).
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Example 1.7 (Level n = 1: Water trimer (H2O)3 as a hydrogen–bonded ring of molecules). Let the base set V0
list the atoms of three water molecules:

V0 = {OA, HA1, HA2, OB , HB1, HB2, OC , HC1, HC2 }.

At level n = 1 we take supervertices to be sets of atoms (i.e., whole molecules). Define

MA = {OA, HA1, HA2}, MB = {OB , HB1, HB2}, MC = {OC , HC1, HC2},

and set
V = {MA,MB ,MC } ⊆ P 1(V0) = P(V0).

Model cooperative hydrogen bonding by the nonempty sets of supervertices

E =
{
ering, eAB , eBC , eCA

}
⊆ P∗(V ),

where
ering = {MA,MB ,MC}, eAB = {MA,MB}, eBC = {MB ,MC}, eCA = {MC ,MA}.

Thus SHG(1) = (V,E) is an n-SuperHyperGraph whose supervertices are molecules (level–1 aggregates of atoms)
and whose superedges capture multi–molecule hydrogen–bond interactions, including the three–membered cyclic
motif ering. By construction V ⊆ P 1(V0) and E ⊆ P∗(V ).

1.2|Fuzzy n-SuperHyperGraphs
A fuzzy set assigns a membership degree in [0, 1] to each element of a universe [24, 25]. Fuzzy graphs and
fuzzy hypergraphs endow vertices and (hyper)edges with such degrees [26, 27, 28, 29, 30, 31, 32]. A fuzzy
n-SuperHyperGraph is a higher-level network structure assigning membership degrees to supervertices and
superedges for modeling complex relations (cf.[33, 21]).

Definition 1.8 (Fuzzy Graph). A fuzzy graph is a pair G = (σ, µ) on a nonempty finite vertex set V , where
σ : V → [0, 1] assigns to each v ∈ V a vertex–membership degree and µ : V × V → [0, 1] is a fuzzy edge relation
satisfying, for all u, v ∈ V ,

µ(u, v) ≤ min{σ(u), σ(v)}.
This generalizes a crisp graph by allowing uncertainty on vertices and edges.

Example 1.9 (Fuzzy Graph on three vertices). Let V = {v1, v2, v3} and define the vertex–membership

σ(v1) = 0.90, σ(v2) = 0.70, σ(v3) = 0.50.

Define the fuzzy edge relation µ : V × V → [0, 1] (symmetric) by

µ =

v1 v2 v3( )
v1 0.90 0.60 0.45
v2 0.60 0.70 0.40
v3 0.45 0.40 0.50

.

Verification of the constraint µ(u, v) ≤ min{σ(u), σ(v)}:

µ(v1, v2) = 0.60 ≤ min{0.90, 0.70} = 0.70, µ(v1, v3) = 0.45 ≤ min{0.90, 0.50} = 0.50,

µ(v2, v3) = 0.40 ≤ min{0.70, 0.50} = 0.50,
and µ(vi, vi) = σ(vi) for i = 1, 2, 3. Hence G = (σ, µ) is a fuzzy graph.

Definition 1.10 (Fuzzy Hypergraph). A fuzzy hypergraph is a quadruple G = (V,E, ψ,w) where V is the
vertex set; E ⊆ P(V ) \ {∅} is the family of hyperedges; ψ ∈ [0, 1]|E|×|V | with ψe,i the degree that i ∈ V belongs
to e ∈ E, subject to ∑

i∈V

ψe,i = 1 (∀e ∈ E),
∑
e∈E

ψe,i > 0 (∀i ∈ V );

and w : E → R>0 assigns a positive weight to each hyperedge.
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Example 1.11 (Fuzzy Hypergraph on four vertices). Let V = {x1, x2, x3, x4} and take the hyperedge family
E = {e1, e2}, e1 = {x1, x2, x3}, e2 = {x2, x4}.

Define ψ ∈ [0, 1]|E|×|V | by
(ψe1,x1 , ψe1,x2 , ψe1,x3 , ψe1,x4) = (0.4, 0.3, 0.3, 0),
(ψe2,x1 , ψe2,x2 , ψe2,x3 , ψe2,x4) = (0, 0.5, 0, 0.5).

Then for each e ∈ E,
∑

i∈V ψe,i = 1: 0.4 + 0.3 + 0.3 = 1 for e1 and 0.5 + 0.5 = 1 for e2. Moreover, each vertex
participates with positive total degree:∑

e∈E

ψe,x1 = 0.4 > 0,
∑
e∈E

ψe,x2 = 0.3 + 0.5 = 0.8 > 0,
∑
e∈E

ψe,x3 = 0.3 > 0,
∑
e∈E

ψe,x4 = 0.5 > 0.

Assign positive weights w : E → R>0, e.g., w(e1) = 2.0 and w(e2) = 1.2. Thus G = (V,E, ψ,w) is a fuzzy
hypergraph.

Definition 1.12 (Fuzzy n-SuperHyperGraph). (cf.[34, 35]) Let SHG(n) = (V,E) be as above with V ⊆ P n(V0)
and E ⊆ P∗(V ). A fuzzy n-SuperHyperGraph is a quadruple

(V,E, σ, µ),
where σ : V → [0, 1] assigns a membership degree to each supervertex and µ : E → [0, 1] assigns a membership
degree to each superedge, subject to the appurtenance constraint

µ(e) ≤ min
v∈e

σ(v) for every e ∈ E.

Example 1.13 (Fuzzy n-SuperHyperGraph at level n = 1). Let the base set be V0 = {a, b, c, d}. At level n = 1,
supervertices are nonempty subsets of V0. Let

A = {a, b}, B = {b, c}, V = {A,B} ⊆ P 1(V0),
and take the superedge family E = {e1, e2} ⊆ P∗(V ) with

e1 = {A,B}, e2 = {A}.
Define the supervertex membership σ : V → [0, 1] by

σ(A) = 0.80, σ(B) = 0.60,
and the superedge membership µ : E → [0, 1] by

µ(e1) = 0.55, µ(e2) = 0.78.
Verification of the appurtenance constraint µ(e) ≤ minv∈e σ(v):

µ(e1) = 0.55 ≤ min{σ(A), σ(B)} = min{0.80, 0.60} = 0.60,
µ(e2) = 0.78 ≤ min{σ(A)} = 0.80.

Hence (V,E, σ, µ) is a fuzzy 1-SuperHyperGraph.

1.3|Molecular Graph
A molecular graph models a molecule with atoms as vertices and bonds as edges, representing its structural
connectivity [36, 37, 38, 39, 40, 41]. Related concepts include molecular hypergraphs [11, 42, 43, 44], which
extend this framework to capture higher-order interactions among multiple atoms simultaneously.

Definition 1.14 (Molecular Graph). [36, 37] A molecular graph is a finite, simple, undirected graph G = (V,E)
in which each vertex v ∈ V represents an atom and each edge e = {u, v} ∈ E represents a chemical bond between
atoms u and v. (Optionally, vertex/edge labels may encode atom types and bond types or orders.)

Example 1.15 (Molecular Graph example: Methane (CH4) connectivity). A molecular graph is a finite simple
undirected graph whose vertices are atoms and edges are chemical bonds. For methane, let

V = {C,H1, H2, H3, H4}, E =
{

{C,H1}, {C,H2}, {C,H3}, {C,H4}
}
.

Then G = (V,E) captures the tetrahedral connectivity of CH4 without imposing any edge orientation.
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1.4|Fuzzy Molecular Graph
A fuzzy molecular graph assigns [0, 1] membership degrees to atoms and bonds on a molecular graph, modeling
uncertainty in structure (cf.[45, 46, 47, 48]).

Definition 1.16 (Fuzzy Molecular Graph). (cf.[45, 46, 47, 48]) Fix finite attribute sets ΣV (atom attributes
such as element, charge, isotope) and ΣE (bond attributes such as order or type). A fuzzy molecular graph is a
sextuple

MF = (V,E, λV , λE , σ, µ),
where

• V is a finite set of atoms;

• E ⊆
{

{u, v} : u, v ∈ V, u ≠ v
}

is a finite set of (undirected) bonds;

• λV : V → ΣV assigns an attribute to each atom;

• λE : E → ΣE assigns an attribute to each bond;

• σ : V → [0, 1] is the vertex (atom) membership function;

• µ : E → [0, 1] is the edge (bond) membership function.

These membership functions satisfy the standard fuzzy-graph consistency constraint
µ({u, v}) ≤ min{σ(u), σ(v)} for every {u, v} ∈ E.

We call (V,E, λV , λE) the underlying (crisp) molecular graph of MF . A crisp molecular graph is recovered as
the special case σ ≡ 1 and µ = 1E (the indicator of E).

Incidence-aware variant (optional). One may additionally specify an incidence membership ψ : V ×E → [0, 1]
with

ψ(v, e) = 0 if v /∈ e, ψ(v, e) ≤ min{σ(v), µ(e) } for all (v, e) ∈ V × E,

to explicitly grade the strength with which atom v participates in bond e.

Example 1.17 (Tautomeric proton shift (keto–enol equilibrium)). Consider a three-atom fragment capturing
the migrating proton in a keto–enol pair. Let

V = {O1, Cα, H
∗}, E =

{
{O1, H

∗}, {Cα, H
∗}
}
.

Choose finite attribute sets ΣV = {O,C,H} and ΣE = {single} and define labels
λV (O1) = O, λV (Cα) = C, λV (H∗) = H, λE({O1, H

∗}) = λE({Cα, H
∗}) = single.

A fuzzy molecular graph MF = (V,E, λV , λE , σ, µ) modeling the time-averaged population may be specified by
σ(O1) = σ(Cα) = σ(H∗) = 1.00,

µ({O1, H
∗}) = 0.70, µ({Cα, H

∗}) = 0.30.
The appurtenance constraint holds since, for each edge e ∈ E,

µ(e) ≤ min{σ(its endpoints)} = min{1, 1} = 1.
Interpretation: the proton spends 70% of the time bound to O1 (enol-like) and 30% to Cα (keto-like), while all
three atoms are always present (σ ≡ 1).

Example 1.18 (Crystallographic partial occupancy of lattice water). In many crystal structures, a solvent
water site is partially occupied. Let a single water molecule at a lattice site be modeled by

V = {Ow, Hw1, Hw2}, E =
{

{Ow, Hw1}, {Ow, Hw2}
}
.

With ΣV = {O,H} and ΣE = {single}, set
λV (Ow) = O, λV (Hwi) = H (i = 1, 2), λE({Ow, Hwi}) = single (i = 1, 2).
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Suppose the refined site occupancy is 0.35. A consistent fuzzy specification is

σ(Ow) = σ(Hw1) = σ(Hw2) = 0.35, µ({Ow, Hw1}) = 0.30, µ({Ow, Hw2}) = 0.28,

which satisfies, for each bond,

µ({Ow, Hwi}) ≤ min{σ(Ow), σ(Hwi)} = min{0.35, 0.35} = 0.35 (i = 1, 2).

Interpretation: the water molecule occupies the site 35% of the time; when present, the O–H bonds are realized
with degrees consistent with that partial occupancy.

2|Main Results
As the main outcome of this paper, we introduce definitions of new graph classes and examine their properties.

2.1|Fuzzy Molecular HyperGraph
A fuzzy molecular hypergraph represents atoms and hyperbonds with graded memberships, extending molecular
graphs to uncertain multi-center chemical interactions.

Definition 2.1 (Fuzzy Molecular HyperGraph (FMHG)). Fix finite attribute sets ΣV (atom attributes) and
ΣE (hyperbond attributes). A fuzzy molecular hypergraph is a septuple

MF H = (V,E, λV , λE , σ, µ, ψ),

where

• V is a finite set of atoms;

• E ⊆ P(V ) \ {∅} is a finite family of (undirected) hyperbonds;

• λV : V → ΣV and λE : E → ΣE assign chemical attributes to atoms and hyperbonds;

• σ : V → [0, 1] is the atom membership function;

• µ : E → [0, 1] is the hyperbond membership function;

• ψ : V × E → [0, 1] is the incidence membership, with ψ(v, e) = 0 whenever v /∈ e,

and the fuzzy consistency constraints hold for every e ∈ E:

µ(e) ≤ min
v∈e

σ(v), ψ(v, e) ≤ min{σ(v), µ(e)} for all v ∈ e. (1)

Remark 2.2. Chemically, σ(v) grades the presence/uncertainty of atom v (e.g., partial occupancy), µ(e) grades
the existence/strength of the multi-center interaction e, and ψ(v, e) grades how strongly atom v participates in
that interaction.

Example 2.3 (Diborane B2H6: three-center two-electron (3c–2e) B–H–B bridges). (cf.[49, 50]) Let

V = {B1, B2, Ht1, Ht2, Ht3, Ht4, Hb1, Hb2},

where Ht• are terminal hydrogens and Hb• are bridging hydrogens. Take

E =
{
eb1, eb2, et1, et2, et3, et4

}
⊆ P(V ) \ {∅},

with
eb1 = {B1, Hb1, B2}, eb2 = {B1, Hb2, B2}, eti = {Bα(i), Hti} (i = 1, . . . , 4),

where α(1) = α(2) = 1 and α(3) = α(4) = 2. Choose finite attribute sets ΣV = {B,H} and ΣE = {3c–2e, 2c–2e}
and define labels by element/bond type: λV (Bj) = B, λV (H•) = H, λE(eb•) = 3c–2e, λE(et•) = 2c–2e. Let
atom membership and hyperbond membership be

σ(B1) = σ(B2) = 1, σ(Hti) = 1 (i = 1, . . . , 4), σ(Hb1) = σ(Hb2) = 0.90,
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µ(eb1) = 0.80, µ(eb2) = 0.75, µ(eti) =
{

0.95, i = 1, 2,
0.92, i = 3, 4.

Define the incidence membership ψ on vertices contained in each hyperedge by

ψ(v, e) = µ(e) if v ∈ e, ψ(v, e) = 0 if v /∈ e.

Verification of constraints for a representative edge: for eb1 = {B1, Hb1, B2},

min
v∈eb1

σ(v) = min{1, 0.90, 1} = 0.90, µ(eb1) = 0.80 ≤ 0.90, ψ(v, eb1) = 0.80 ≤ min{σ(v), µ(eb1)} (v ∈ eb1).

All other edges satisfy the same inequalities by construction. Hence MF H = (V,E, λV , λE , σ, µ, ψ) is an FMHG
for diborane.

Example 2.4 (µ3-Oxo trinuclear iron core Fe3O). (cf.[51]) Let V = {Fe1,Fe2,Fe3, Oµ3} and

E =
{
eµ3 , e1, e2, e3

}
, eµ3 = {Fe1,Fe2,Fe3, Oµ3}, ei = {Fei, Oµ3} (i = 1, 2, 3).

Let ΣV = {Fe,O} and ΣE = {µ3-oxo,Fe–O} with labels λV (Fei) = Fe, λV (Oµ3) = O, λE(eµ3) = µ3-oxo,
λE(ei) = Fe–O. Choose

σ(Fei) = 1 (i = 1, 2, 3), σ(Oµ3) = 1,
µ(eµ3) = 0.85, µ(e1) = 0.90, µ(e2) = 0.88, µ(e3) = 0.89,

and set ψ(v, e) = µ(e) if v ∈ e and 0 otherwise. Then for eµ3 ,

min
v∈eµ3

σ(v) = 1 ⇒ µ(eµ3) = 0.85 ≤ 1, ψ(v, eµ3) = 0.85 ≤ min{1, 0.85} = 0.85 (v ∈ eµ3),

and similarly for each pairwise Fe–O edge ei. Thus this FMHG represents the multi-center µ3-oxo interaction
consistently.

Example 2.5 (Benzene C6H6: delocalized π-sextet). (cf.[52]) Let V = {C1, . . . , C6, H1, . . . ,H6} and consider
the hyperedge family

E =
{
eπ, eσ,1, . . . , eσ,6

}
,

where the delocalized π-system is modeled by

eπ = {C1, C2, C3, C4, C5, C6},

and each σ C–H bond by eσ,i = {Ci, Hi}, i = 1, . . . , 6. Let ΣV = {C,H} and ΣE = {π-system,C–H} with
obvious labels. Choose full atom presence

σ(Ci) = σ(Hi) = 1 (i = 1, . . . , 6),

and hyperbond memberships

µ(eπ) = 0.90, µ(eσ,i) = 0.98 (i = 1, . . . , 6).

Define ψ(v, e) = µ(e) if v ∈ e and 0 otherwise. Then

min
v∈eπ

σ(v) = 1 ⇒ µ(eπ) = 0.90 ≤ 1, ψ(v, eπ) = 0.90 ≤ min{1, 0.90} = 0.90 (v ∈ eπ),

and for each eσ,i,

min
v∈eσ,i

σ(v) = 1 ⇒ µ(eσ,i) = 0.98 ≤ 1, ψ(v, eσ,i) = 0.98 ≤ min{1, 0.98} = 0.98.

Hence (V,E, λV , λE , σ, µ, ψ) is an FMHG encoding the six-center π-delocalization together with the local C–H
interactions.

Theorem 2.6 (FMHG generalizes the fuzzy molecular graph). There exist maps

I : {fuzzy molecular graphs} −→ {FMHGs}, U : {FMHGs} −→ {fuzzy molecular graphs},

such that for every fuzzy molecular graph MF we have U
(
I(MF )

)
= MF . Hence fuzzy molecular graphs embed

as a special case of FMHGs (hyperedges of size 2), so FMHGs strictly generalize fuzzy molecular graphs.
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Proof : Let MF = (V,E(2), λV , λ
(2)
E , σ, µ(2)) be a fuzzy molecular graph. Define

I(MF ) :=
(
V, E := E(2), λV , λE := λ

(2)
E , σ, µ := µ(2), ψ

)
,

where for all e = {u, v} ∈ E = E(2) we put

ψ(u, e) := µ(2)(e), ψ(v, e) := µ(2)(e), ψ(x, e) := 0 (x ∈ V \ e).

We verify the FMHG constraints (1). Since µ(2)(e) ≤ min{σ(u), σ(v)} by the fuzzy molecular graph condition,
we get

µ(e) = µ(2)(e) ≤ min
x∈e

σ(x),

and for x ∈ e,
ψ(x, e) = µ(2)(e) ≤ min{σ(x), µ(2)(e)} = min{σ(x), µ(e)}.

Also ψ(x, e) = 0 when x /∈ e by definition. Thus I(MF ) is an FMHG.

Conversely, for an FMHG MF H = (V,E, λV , λE , σ, µ, ψ) define

U(MF H) :=
(
V, E(2), λV , λ

(2)
E , σ, µ(2)),

where E(2) := { e ∈ E : |e| = 2 }, λ(2)
E := λE |E(2) , and µ(2) := µ|E(2) . For any e = {u, v} ∈ E(2), the FMHG

axiom gives µ(2)(e) = µ(e) ≤ min{σ(u), σ(v)}, so U(MF H) is a fuzzy molecular graph.

Finally, applying U to I(MF ) does not change V , E(2), λV , λ(2)
E , σ, or µ(2) because I(MF ) uses only size-2

hyperedges with the same labels and memberships. Hence U
(
I(MF )

)
= MF . □

Theorem 2.7 (FMHG is a fuzzy hypergraph). For any fuzzy molecular hypergraph MF H = (V,E, λV , λE , σ, µ, ψ),
the quintuple

H :=
(
V,E, σ, µ, ψ

)
is a fuzzy hypergraph.

Proof : By definition of FMHG, E ⊆ P(V ) \ {∅}, σ : V → [0, 1], µ : E → [0, 1], and ψ : V × E → [0, 1] with
ψ(v, e) = 0 for v /∈ e. It remains to verify the fuzzy constraints.

Fix e ∈ E and enumerate e = {v1, . . . , vk}, k ≥ 1. Put αi := σ(vi) ∈ [0, 1] and β := µ(e) ∈ [0, 1]. The FMHG
axiom yields

β = µ(e) ≤ min
1≤i≤k

αi,

which is exactly the hyperedge–vertex compatibility for fuzzy hypergraphs. For each j ∈ {1, . . . , k}, the incidence
constraint in FMHG gives

ψ(vj , e) ≤ min{σ(vj), µ(e)} = min{αj , β} ∈ [0, 1].

Thus all fuzzy hypergraph axioms hold, and H is a fuzzy hypergraph. □

Proposition 2.8 (Crisp recovery and conservative extension). If σ ≡ 1, µ(e) ∈ {0, 1} and ψ(v, e) = 1{v∈e} ·µ(e),
then MF H reduces to a (crisp) labeled molecular hypergraph (V,E, λV , λE). If, in addition, all hyperedges have
size 2, one recovers a (crisp) labeled molecular graph.

Proof : With σ ≡ 1 and µ(e) ∈ {0, 1}, the inequality µ(e) ≤ minv∈e σ(v) is automatic. The chosen ψ satisfies
ψ(v, e) = 0 for v /∈ e and ψ(v, e) = 1 for v ∈ e when µ(e) = 1, hence ψ(v, e) ≤ min{σ(v), µ(e)} holds with
equality when v ∈ e and µ(e) = 1. Therefore (V,E) is a crisp hypergraph carrying labels λV , λE . If |e| = 2 for
all e, this is precisely a (crisp) labeled molecular graph. □
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2.2|Fuzzy Molecular SuperHyperGraph
A fuzzy molecular superhypergraph assigns membership degrees in [0, 1] to supervertices (atoms, groups, or
higher aggregates) and to superedges (multi–center interactions) at a fixed hierarchical level, thereby extending
fuzzy molecular hypergraphs in a type–consistent way.

Definition 2.9 (Fuzzy Molecular SuperHyperGraph (level n)). Fix n ∈ N0, a finite base (atom) set V0, and
finite attribute sets ΣV (vertex/aggregate attributes) and ΣE (edge/interaction attributes). A fuzzy molecular
superhypergraph at level n is an octuple

M(n)
F SH = (V,E, λV , λE , σ, µ, ψ;V0)

consisting of:

• a finite level–n vertex set V ⊆ P n(V0) (the n–supervertices);

• a finite edge family E ⊆ P∗(V ) (each e ∈ E is a nonempty set of supervertices);

• label maps λV : V → ΣV and λE : E → ΣE ;

• membership maps σ : V → [0, 1] (vertex membership) and µ : E → [0, 1] (edge membership);

• an incidence membership ψ : V × E → [0, 1] with ψ(v, e) = 0 whenever v /∈ e;

subject to the fuzzy consistency constraints, for every e ∈ E and v ∈ V ,
µ(e) ≤ min

u∈e
σ(u), ψ(v, e) ≤ min{σ(v), µ(e)} if v ∈ e. (2)

Remark 2.10. Chemically, n = 0 models individual atoms; n = 1 may group atoms into functional moieties;
larger n support hierarchical assemblies. The functions σ, µ, and ψ quantify presence/strength and participation
under uncertainty.

Example 2.11 (Level n = 1: Serine–histidine–aspartate catalytic triad in a serine protease). (cf.[53]) Let the
base atom set V0 collect all atoms of three residues Ser195, His57, and Asp102. At level n = 1, supervertices are
nonempty subsets of V0; take the residue–level aggregates

S = {atoms of Ser195}, H = {atoms of His57}, D = {atoms of Asp102},
and set V = {S,H,D} ⊆ P 1(V0). Let the superedge family be

E =
{
etriad, eSH , eHD

}
⊆ P∗(V ), etriad = {S,H,D}, eSH = {S,H}, eHD = {H,D}.

Choose label sets ΣV = {Ser,His,Asp} and ΣE = {charge relay,H-bond} and define
λV (S) = Ser, λV (H) = His, λV (D) = Asp, λE(etriad) = charge relay, λE(eSH) = λE(eHD) = H-bond.

Pick memberships (steady-state ensemble averages)
σ(S) = σ(H) = σ(D) = 1.00, µ(etriad) = 0.85, µ(eSH) = 0.90, µ(eHD) = 0.88,

and define incidence ψ(v, e) = µ(e) if v ∈ e and 0 otherwise. Then the FMSHG constraints hold, e.g.
µ(etriad) = 0.85 ≤ min{1, 1, 1} = 1, ψ(S, etriad) = 0.85 ≤ min{1, 0.85} = 0.85,

and similarly for H,D and for eSH , eHD. Thus M(1)
F SH = (V,E, λV , λE , σ, µ, ψ;V0) models the triad.

Example 2.12 (Level n = 1: Aqueous first hydration shell of Na+). (cf.[54]) Let V0 contain the ion Na and
three water molecules with atoms Wi = {Oi, Hi1, Hi2} for i = 1, 2, 3. At level n = 1 define the supervertices

N = {Na}, M1 = W1, M2 = W2, M3 = W3,

and set V = {N,M1,M2,M3} ⊆ P 1(V0). Use the superedges
E =

{
eshell, e1, e2, e3

}
⊆ P∗(V ), eshell = {N,M1,M2,M3}, ei = {N,Mi}.

Take ΣV = {ion,water} and ΣE = {first-shell, ion–water} with
λV (N) = ion, λV (Mi) = water; λE(eshell) = first-shell, λE(ei) = ion–water.
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Choose memberships reflecting partial residence
σ(N) = 1.00, σ(M1) = 0.95, σ(M2) = 0.90, σ(M3) = 0.85,
µ(eshell) = 0.80, µ(e1) = 0.88, µ(e2) = 0.84, µ(e3) = 0.78,

and let ψ(v, e) = µ(e) if v ∈ e and 0 otherwise. Check, e.g.,
µ(eshell) = 0.80 ≤ min{1.00, 0.95, 0.90, 0.85} = 0.85, ψ(M3, eshell) = 0.80 ≤ min{0.85, 0.80} = 0.80,

and for e3,
µ(e3) = 0.78 ≤ min{1.00, 0.85} = 0.85, ψ(N, e3) = 0.78 ≤ min{1.00, 0.78} = 0.78.

Hence (V,E, σ, µ, ψ) satisfies the FMSHG constraints.

Example 2.13 (Level n = 2: SDS micelle with a water corona). (cf.[55]) Let V0 collect atoms of k sodium
dodecyl sulfate (SDS) molecules Mi (i = 1, . . . , k) and m water molecules Wj (j = 1, . . . ,m). At level n = 1,
view each molecule as a supervertex: M̃i = Mi, W̃j = Wj , so Ṽ = {M̃1, . . . , M̃k, W̃1, . . . , W̃m} ⊆ P 1(V0). At
level n = 2, define two aggregate supervertices (sets of level–1 objects)

C = {M̃1, . . . , M̃k} (surfactant cluster), W = {W̃1, . . . , W̃m} (hydration shell),
and take V = {C,W} ⊆ P 2(V0). Use the superedges

E =
{
emicelle, einterface

}
⊆ P∗(V ), emicelle = {C}, einterface = {C,W}.

Let ΣV = {cluster, shell} and ΣE = {aggregate, contact} with
λV (C) = cluster, λV (W ) = shell, λE(emicelle) = aggregate, λE(einterface) = contact.

Choose memberships
σ(C) = 0.95, σ(W ) = 0.90, µ(emicelle) = 0.92, µ(einterface) = 0.80,

and set ψ(v, e) = µ(e) if v ∈ e and 0 otherwise. Then
µ(emicelle) = 0.92 ≤ min{σ(C)} = 0.95, µ(einterface) = 0.80 ≤ min{0.95, 0.90} = 0.90,

and, for incidence,
ψ(C, einterface) = 0.80 ≤ min{0.95, 0.80} = 0.80, ψ(W, einterface) = 0.80 ≤ min{0.90, 0.80} = 0.80.

Hence M(2)
F SH = (V,E, λV , λE , σ, µ, ψ;V0) is a valid level–2 FMSHG capturing a micelle and its water corona.

Theorem 2.14 (FMSHG generalizes the fuzzy molecular hypergraph). When n = 0 (so P 0(V0) = V0), every
fuzzy molecular hypergraph MF H = (V,E, λV , λE , σ, µ, ψ) with V ⊆ V0 and E ⊆ P∗(V ) embeds into a fuzzy
molecular superhypergraph M(0)

F SH such that a suitable forgetful map returns MF H exactly.

Proof : Define the embedding
I0(MF H) :=

(
V, E, λV , λE , σ, µ, ψ; V0

)
,

viewing V ⊆ V0 and E ⊆ P∗(V ) = P∗(P 0(V0)). The constraints (2) are exactly the fuzzy molecular hypergraph
axioms, hence I0(MF H) is a valid level–0 FMSHG.

Define the forgetful map
U0
(
V,E, λV , λE , σ, µ, ψ;V0

)
:= (V,E, λV , λE , σ, µ, ψ).

Then U0◦ I0 = id on fuzzy molecular hypergraphs, proving that FMSHGs (at n = 0) strictly generalize fuzzy
molecular hypergraphs. □

Theorem 2.15 (Forgetting labels yields a fuzzy superhypergraph). Let M(n)
F SH = (V,E, λV , λE , σ, µ, ψ;V0) be a

fuzzy molecular superhypergraph at level n. Then the quadruple
FSH(n) := (V,E, σ, µ)

is a fuzzy superhypergraph at level n, i.e.,
µ(e) ≤ min

v∈e
σ(v) for all e ∈ E. (3)
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Proof : By Definition 2.9, V ⊆ P n(V0) is finite and E ⊆ P∗(V ) is a finite family of nonempty sets of supervertices.
The first inequality in (2) is precisely (3), so (V,E, σ, µ) satisfies the fuzzy superhypergraph axiom. □

Proposition 2.16 (Crisp recovery; conservative extension). If σ ≡ 1, µ(e) ∈ {0, 1} for all e ∈ E, and
ψ(v, e) = 1{v∈e} · µ(e), then M(n)

F SH reduces to a labeled molecular superhypergraph (V,E, λV , λE) at level n. For
n = 0 this is a labeled molecular hypergraph; if, in addition, every e ∈ E has |e| = 2, one recovers a labeled
molecular graph. Hence the fuzzy model is a conservative extension of the crisp one.

Proof : With σ ≡ 1 and µ ∈ {0, 1}, the inequality µ(e) ≤ minv∈e σ(v) = 1 is automatic. The chosen ψ is 0
off–incidence and 1 on–incidence when µ(e) = 1, so (2) holds. Forgetting σ, µ, ψ yields the crisp labeled structure.
The stated specializations follow immediately. □

3|Conclusion
In this paper, we introduced definitions of molecular fuzzy graphs, hypergraphs, and superhypergraphs, and
examined their properties and potential applications. Through these frameworks, it becomes possible to represent
hierarchical molecular structures as well as molecular structures with uncertainty.

In future work, we aim to conduct quantitative analyses of the proposed concepts through computational
experiments. We also plan to explore possible extensions employing Intuitionistic Fuzzy Graphs [56, 57],
Neutrosophic Graphs [58, 59, 60, 61], hyperfuzzy sets [62, 63, 23], and Plithogenic Graphs [64, 65, 66, 67, 68].
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